Clean Coalition

Feed-In Tariffs (FITs)

Unleashing commercial-scale renewables

Craig Lewis Executive Director 650-796-2353 mobile craig@clean-coalition.org

Making Clean Local Energy Accessible Now

20 Nov 2018

To accelerate the transition to renewable energy and a modern grid through technical, policy, and project development expertise

Clean Coalition vision

Clean Coalition

By 2025, set the stage for achieving 25% of the energy consumption in the United States from local renewables and deliver the associated trifecta of economic, environmental, and resilience benefits.

Relentlessly design and implement policies that facilitate local renewables and other distributed energy resources (DER) and program successes that show the way. FITs are key and are being driven by both policy and program actions.

Wholesale Distributed Generation (WDG) is the market segment that will realize the Clean Coalition's mission, vision, and over-arching goal.

FITs address the WDG market segment

Clean Coalition

FITs proliferated WDG solar in Germany

Solar Markets: Germany vs California (2002-2012)

Germany deployed over 10 times more solar than California in the decade from 2002 — despite California having 70% better solar resource.

The majority of German solar is local solar

German Solar Capacity Installed through 2012

Source: Paul Gipe, March 2012

Germany's solar deployments are almost entirely sub-2 MW projects on builtenvironments and interconnected to the distribution grid (not behind-the-meter).

Project Size	Euros/kWh	USD/kWh	California Effective Rate \$/kWh
Under 10 kW	0.1270	0.1359	0.0628
10 kW to 40 kW	0.1236	0.1323	0.0611
40.1 kW to 750 kW	0.1109	0.1187	0.0548
Other projects up to 750 kW*	0.0891	0.0953	0.0440

- Conversion rate for Euros to Dollars is €1:\$1.07.
- California's effective rate is reduced 40% due to tax incentives and then an additional 33% due to the superior solar resource.

Replicating German scale and efficiencies would yield rooftop solar today at only between <u>4 and 6 cents/kWh</u> to California ratepayers.

* For projects that are not sited on residential structures or sound barriers.

Case for FITs

FITs keep things simple

 Standardized and guaranteed contract with a long-term, predefined rate paid for energy produced

Utility customer

100% of the renewable energy generation is purchased by SDGE at <u>FIT rate</u>

SDGE

100% of customer energy usage is purchased based on a normal <u>retail rate</u>

- Maintains relationship with customers: A buy-all, sell-all structure; Load Serving Entity (LSE) customers continue to pay for all energy they consume, so load is not reduced from FIT projects.
- Creates visible, manageable assets: A FIT uses wholesale interconnection, so the LSE and Independent System Operator (ISO) have visibility and control of power produced by DG systems.
- Guides the market to build desired projects: Through adders, a FIT can be tailored to drive deployment of projects that have certain characteristics, such as location, size, and ability to dispatch power on-call using energy storage.

Net metering does not work for many properties

Maximizes applicable properties: A FIT simplifies the process for all commercial properties to participate in energy generation, including nonowner occupied and split-metered properties. Also, a FIT removes on-site load limitations to allow for optimal project sizing.

BREAKING NEWS STORIES

CITY OF PALO ALTO TO SOLARIZE CITY-OWNED PARKING STRUCTURES AND ENABLE ITS ELECTRIC VEHICLE FUTURE

January 26, 2016

With support from the Clean Coalition, the Ci of Palo Alto creates a new model for deployin local renewables on municipal properties.

Read More...

Source: City of Palo Alto

FITs efficiently open the WDG market segment

- FITs offer clear guidance to the market through predefined terms and prices, thereby allowing project developers to qualify their planned projects before undertaking significant investment in siting, interconnection, etc.
- A clear, predictable purchase offer and a simple, standardized contract for use between a LSE and energy generators — streamline the development of clean local energy. Not only does this approach nearly eliminate speculative projects, but it also drives down renewable energy development costs.
- FITs secure projects that will be built immediately and proven to deliver power within 12 to 18 months.

Auctions create inefficient markets, FITs do not

- Auctions and similar competitive solicitations result in a highly inefficient market due to exorbitant bidding costs and extreme failure rates.
 - Average minimum cost of producing an acution bid is over \$150k, which overwhelms commercial-scale projects that generally have total turnkey installed costs of less than \$500k.
 - 97% failure rates, combined with exorbitant bidding costs, are a recipe for bankruptcy.
 - Yes, it is insane to think that auctions could possibly attract commercialscale renewables and other DER, and yet, California utilities and policymakers chronically prove Einstien's definition of insanity by continuing to pursue local renewables and other DER via auctions!
- Competitive solicitations for project developers raise the costs of doing business for all developers — and result in higher prices for consumers.
- Losing bids tie up prime siting options and flood interconnection queues. Winning bids include unrealistically low offers based on speculative future pricing rather than firm current pricing, resulting in projects that may never be built.

Auctions/solicitations have high failure rates

Across California RPS solicitations, fewer than 1 in 10 project bids were actually developed, which resulted in high administrative costs for the program and exorbitant risk/cost for renewable energy project development.

Making Clean Local Energy Accessible Now

Clean

Coalition

Auctions/solicitations have high failure rates

In California's Renewable Auction Mechanism (RAM) program, only a small percentage of proposed projects are actually contracted.

RAM 1-3: Number of Offers and Executed Contracts (All IOUs)

Clean

Coalition

Feed-In Tariff for East Bay Community Energy (EBCE)

- Open to all renewable energy technologies that meet California's Renewables Portfolio Standard (RPS) eligibility requirements
- Projects must be sited in the EBCE service territory
- Projects can sized up to 3 MW *

*All project size capacity references in this presentation are Alternating Current (AC) rated, unless noted otherwise.

EBCE FIT program size

A 50 MW FIT will provide roughly 1.29% of EBCE annual electric load

FIT capacity	Annual energy production from each kW of FIT capacity	Annual energy deliveries through FIT	Annual CCA energy sales	Percent of total CCA retail sales
50 MW	1,600 kWh	80,000 MWh	6,200,000 MWh	1.29%

 Annual production of 1,600 kWh/kW of FIT capacity is based on solar resource analysis for Alameda County, as we expect PV to be the dominant FIT technology

Location	Solar resource quality (kWh/m²/day)	System type	Capacity factor	Annual energy production (kWh/kWAc/year)
Oakland Airport	4.63	Fixed rooftop installation	19.1%	1521
Livermore	5.00	Fixed rooftop installation	20.1%	1605
Livermore	5.00	Single-axis tracking installation	25.4%	2024

EBCE FIT initial pricing

- Initial baseline FIT pricing of 9¢/kWh fixed for 20 years.
 - This price is expected to support larger, ground-mounted solar PV projects in eastern Alameda County.
 - Modeling was done using NREL's System Advisor Model.

Type of system	Size of solar PV system (WAC)	Installed cost (\$/W _{DC})	20-year fixed PPA price (¢/kWh) Oakland	20-year fixed PPA price (¢/kWh) Livermore
Built environment	100 kW roof	\$2.30	15.6¢	14.8¢
Built environment	350 kW roof	\$2.12	14.5¢	13.8¢
Built environment	500 kW roof	\$2.06	14.2¢	13.5¢
Built environment	1 MW roof	\$1.90	13.5¢	12.8¢
Ground-mount	1 MW tracking	\$1.86	n/a11	10.0¢
Ground-mount	3 MW tracking	\$1.78	n/a	9.74¢

EBCE FIT Market Responsive Pricing (MRP)

Once baseline pricing is set for the initial FIT tranche, MRP governs baseline pricing, which can never exceed a universal maximum of 11¢/kWh.

Market Responsive Pricing for EBCE FIT

Making Clean Local Energy Accessible Now

EBCE FIT pricing adders

- The concept of pricing adders is simple
 - An LSE identifies the characteristics it would like to see in its FIT projects and then creates adders to its baseline FIT price to incentivize projects with these characteristics.
- The Clean Coalition recommends EBCE implement four pricing adders:
 - F Built-environment adder at 20%
 - Rooftops, parking lots, parking structures, etc.
 - Small project adder at either 10% or 20%
 - 10% for projects larger than 100 kW and less than or equal to 350 kW.
 - 7 20% for projects less than or equal to 100 kW.
 - Community benefit adder at 5%
 - Tax-exempt and/or disadvantaged zone.
 - Dispatchability adder at 15 cents/kWh
 - For Eligible for guaranteed daily dispatchable renewable energy at 2-4 hours of nameplate renewable energy FIT project.

Highlights from public comments on the FIT

- Numerous parties expressed strong support for the FIT because it will drive local renewable energy development and local job creation (CalSEIA, Borrego Solar, East Bay Clean Energy Alliance, others)
- Some parties (Borrego, EBCEA) would like to see a larger program and more adders; however, there are rate impacts to consider when it comes to expanding FIT program capacity and increasing the pricing.
- Borrego Solar recommended rolling unselected applications from one tranche into the next tranche. We agree with this suggestion and will clarify this in the final FIT design recommendations.
- More than Smart expressed concern about the benefits of the FIT to EBCE customers, as well as the untested nature of the proposed Market Responsive Pricing (MRP) mechanism.
 - In alignment with the goal of the LDBP, the FIT is designed to drive local economic and environmental benefits through local renewables. It also unleashes commercial-scale projects that are ill-suited to NEM (non-owner occupied, split-metered/multi-tenant, low on-site load) and avoids the tremendous inefficiency of auctions that kill any participation from the commercial-sale market segment.
 - The MRP is similar to California's ReMAT program, which has effectively driven down pricing for sub-3 MW renewable energy projects using a market adjusting tariff. An MRP has also driven German rooftop solar pricing to less than 5 cents/kWh equivalent.

EBCE FIT program timing

- 5 MW quarterly allocations from Spring 2018 thru Summer 2020
- The FIT will bring all 50 MW of capacity online by year-end 2021 before ITC steps down from 22% to 10%

East Bay Community Energy FIT program expansion and timing

Allocation date	Capacity allocation	Total FIT program size	Estimated commercial online date (COD) ⁷	Approximate annual energy deliveries through FIT ⁸	FIT as a percent of total CCA estimated retail sales ⁹
Spring 2018	5 MW	5 MW	Fall 2019	8,000,000 kWh	0.129%
Summer 2018	5 MW	10 MW	Winter 2019	16,000,000 kWh	0.26%
Fall 2018	5 MW	15 MW	Spring 2020	24,000,000 kWh	0.39%
Winter 2018	5 MW	20 MW	Summer 2020	32,000,000 kWh	0.52%
Spring 2019	5 MW	25 MW	Fall 2020	40,000,000 kWh	0.64%
Summer 2019	5 MW	30 MW	Winter 2020	48,000,000 kWh	0.77%
Fall 2019	5 MW	35 MW	Spring 2021	56,000,000 kWh	0.90%
Winter 2019	5 MW	40 MW	Summer 2021	64,000,000 kWh	1.03%
Spring 2020	5 MW	45 MW	Fall 2021	72,000,000 kWh	1.12%
Summer 2020	5 MW	50 MW	Winter 2021	80,000,000 kWh	1.29%

EBCE FIT program capacity management

- If any capacity remains unclaimed within 30 days of the next upcoming allocation, then that excess capacity should be rolled into the next allocation.
 - For example, if a 5 MW allocation in Spring 2018 receives only 3 MW worth of applications, then the Summer 2018 capacity allocation should total 7 MW the originally planned 5 MW plus the 2 MW of unclaimed capacity from Spring 2018.
- This will ensure that the program remains on track to deliver the desired capacity in line with the program timeline.

Solar Siting Survey for City of San Diego

SSS is performed manually through a multi-step process:

- **Set** a minimum project size for the SSS
- Scan the target region via Google Earth Pro for prospective solar sites that meet the minimum project size
- Measure the usable surface area (roof, parking lot, parking structure) and eliminate obvious portions that are not viable (trees were ignored since some property owners may elect to top or remove trees in order to install solar)
- Assess the probable solar generation density against the minimum project size threshold (1 MWac for this SSS)
- Where sensible, aggregate campus-type structures that are likely to have common ownership into a single site (examples being parking lots and rooftops in a shopping center, industrial park, or school campus)

- Searchable spreadsheet including detailed results and linking to the interactive maps
- Interactive maps in the form of Google Earth .kml files with icons marking structures and aggregations with details available in pop-up windows
 - Google Map versions are also made available
- Summary report of key findings and methodology

Summary of southern portion of City of San Diego SSS findings (all figures in AC)

- Over 300 MW of <u>technical solar siting potential</u> was found on built environments that can support projects sized at least 1 MW.
 - Note that the technical solar siting potential will be reduced by constraints that were not considered like structures that cannot support extra weight without significant upgrade and grid bottlenecks that would result in excessive solar curtailment (or require time-shifting dispatchability via energy storage)
- 75% of the potential is in parking lots and parking structures.
- Extrapolations to lower minimum project sizes:
 - 600 MW minimum total potential for projects sized at least 500 kW
 - 1.2 GW minimum total potential for projects sized at least 100 kW

SSS northern and southern sections and relevant substations

Clean <u>Coa</u>lition

Overview of SSS sites, southern section

Clean Coalition

Over 300 MW of Solar Siting Potential identified

- Sites > 1 MW
- On built environments

Sears Outlet

Clean Coalition

Clean Coalition

Sears Outlet

Clean Coalition

Potential PV Capacity: 1,190 kW

x

Sears Outlet 960 Sherman St San Diego, CA 92110

PV Area: 170,000 sqft Structure Type: Flat Roof PV Density Potential: High

ICA Data

1,400 kW

Sears Outlet

Item	Data	UoM
Substation ID	Old Town	
Feeder ID	100	
Distance	-	ft
PV Minimal Impact	1,460	kW
PV Possible Impact	9,750	kW

Directions: To here - From here

ICA sample

PV S	ites	IC	A
Substation Name	Substation Survey Siting Potential [MW]	Substation Minimal Impact [MW]	Substation Possible Impact [MW]
Feeder ID	Feeder Survey Siting Potential [MW]	PV Feeder Minimal Impact [MW]	PV Feeder Possible Impact [MW]
Border	52.59	6.48	43.17
533	30.61	1.35	8.99
534	5.63	1.03	6.87
535	5.01	1.41	9.40
1,160	11.34	1.46	9.76
Division	3.67	0.54	3.60
48	3.67	1.50	10.00
Genesee	24.02	1.50	10.00
268	4.22	1.49	9.95
271	3.47	1.49	9.90
272	2.32	1.34	8.95
273	9.56	1.48	9.89
270	4.45	1.50	10.00
Imperial Beach	3.59	7.95	52.99
723	3.59	1.40	9.33
Kearney	4.20	1.50	9.97
711	1.40	1.50	9.97
251	2.80	0.98	6.56
Kettner	20.92	8.39	55.92
134	13.40	1.50	10.00
135	5.35	1.41	9.40
458	2.17	1.40	9.33
Mesa Heights	7.23	11.65	77.70
776	2.13	1.73	11.50
775	2.55	1.77	11.82
1,286	2.56	1.76	11.55
Old Town	24.01	11.96	79.70
100	17.37	1.46	9.75
136	3.05	1.49	9.96
491	3.60	1.50	9.98
Pacific Beach	1.24	8.46	56.39
546	1.24	1.45	9.70

North of state hwy 52 (mostly UCSD)

Clean Coalition

Between state hwy 52 and Interstate 8

South of Interstate 8

Clean Coalition

Otay Mesa to Mexican border

	Course	Count	LAN/ Tabal	DV/W/ ACA-	1 000 1444	h and h-	500 Lat	/ Leasthan	E001
	Count	Count	KW_lotal	PV W_AC>=	1,000 KW	> and >=	= 500 KW	Less than	500 K
	Sites	Structures		Structures		Structure	S	Structures	5
Totals:									
North:									
South:	85	417	302,869 kW	94	168,868 kW	117	81,985 kW	206	52,016 k
Sum	mary b	y Structure	Types						
Sum Roof	mary b _Flat	y Structure kW_Total F	e Types Pkg_Lot	kW_Total	Pkg_Garage kV	V_Total R	oof_Angled kV	V_Total Wa	ter kW
Sum Roof	mary b _Flat	y Structure kW_Total P	e Types Pkg_Lot	kW_Total	Pkg_Garage kV	V_Total R	oof_Angled kV	V_Total Wa	ter kW
Sum Roof	mary b _Flat	y Structure kW_Total P	e Types Pkg_Lot P	kW_Total	Pkg_Garage kV	V_Total R	oof_Angled k\	V_Total Wa	ter kW
Sum Roof	mary b _Flat	y Structure kW_Total F	e Types Pkg_Lot	kW_Total	Pkg_Garage kV	V_Total R	oof_Angled k\	V_Total Wa	ter kW

Solar siting capacity by site count

