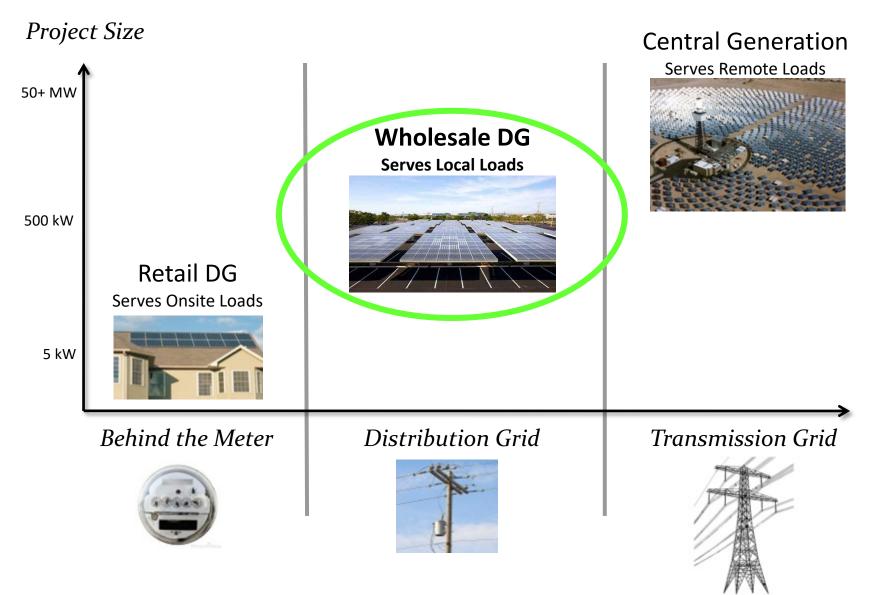

# Locational Net Benefits Assessment

# Background, Summary & Next Steps

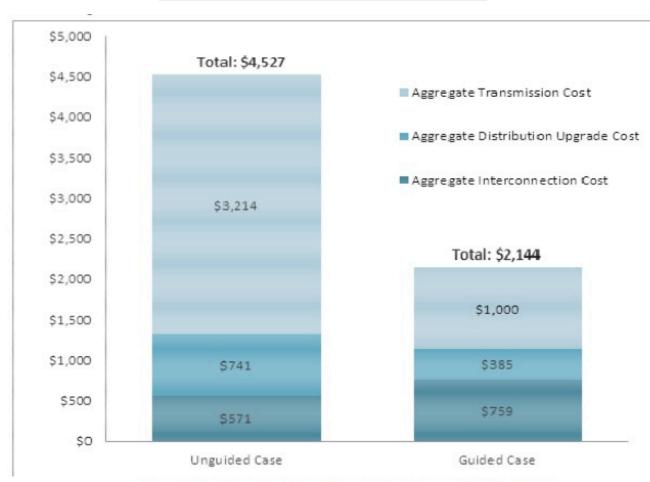
Kenneth Sahm White
Director, Policy & Economic Analysis
Clean Coalition
831.295.3437 mobile
sahm@clean-coalition.org


### Distributed energy resources (DER)





### Wholesale DG is a critical segment






### Guided siting benefits (locational value)



### SCE Share of 12,000 MW Goal



- methodology should include transmission costs.
- Interconnection
   policies should favor
   high value locations,
   and reduce cost
   uncertainty for
   developers.

Figure 8: Total SCE System Costs of LER Proposal (Million USD)

**Guided Siting Saves Ratepayers 50%** 

Source: SCE Report May 2012

### **Distribution Resources Plan (DRP)**



- Analytical Frameworks
  - Grid Integration Capacity Analysis (ICA)
  - •Quantification of Distributed Energy Resources' (DER) locational value (aka locational net benefits analysis or LNBA)
  - Growth scenarios forecast
- Demonstration Projects
  - •ICA maps
  - LNBA Calculator
  - Field demos to test and verify DER value
- Policy issues

### **CA Distribution Resources Plans (AB 327)**



### Optimal Location Benefit Analysis Requirements:

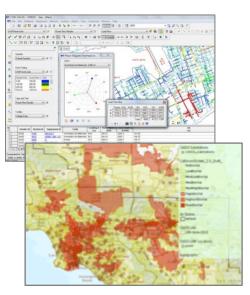
- Unified IOU Locational Net Benefits methodology
- Build upon E3's Distributed Energy Resources Avoided Cost Model (DERAC)

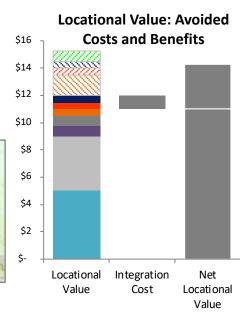
### # Minimum Value Components to include in Locational Net Benefit Methodology

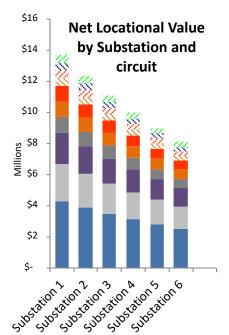
- 1 Avoided Sub-Transmission, Substation and Feeder Capital and Operating Expenditures
- 2 Avoided Distribution Voltage and Power Quality Capital and Operating Expenditures
- 3 Avoided Distribution Reliability and Resiliency Capital and Operating Expenditures
- 4 Avoided Transmission Capital and Operating Expenditures
- 5 Avoided Flexible Resource Adequacy (RA) Procurement
- 6 Avoided Renewables Integration Costs
- 7 Any societal avoided costs which can be clearly linked to the deployment of DERs
- 8 Any avoided public safety costs which can be clearly linked to the deployment of DERs

### **DRP** analysis process




Identify DPA & Substations


Perform Planning
Analyses


Calculate Locational Value

Rank Locations by Value









### Stages of DRP optimal location implementation







Grid Modeling & Optimization



Distribution
Resource Plan
Design



Distributed Energy
Resource
Deployment

Full cost and value accounting methods for DER

Siting analysis; powerflow modeling; DER optimization

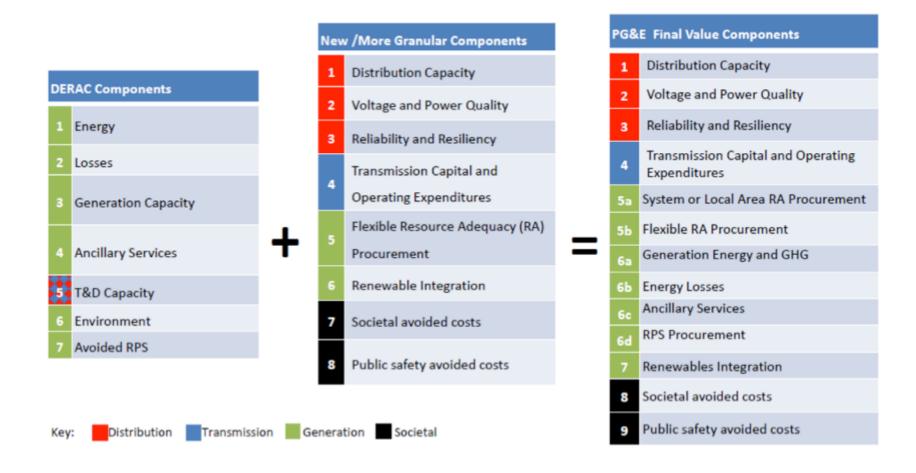
(LNBA for value)

Design and approval

Implementation: procurement and interconnection programs

### **Locational Net Benefits Analysis (LNBA) Tool**




# Optimal location for DERs = available hosting capacity + locational benefits greater than costs

- LNBA Tool calculates locational benefits
  - Distribution investment deferral value + locational avoided costs
  - Indicative or confidential market values
- Distribution investment deferral value identified based on DER services
- Distribution capacity services
  - Voltage support services
  - Reliability (back-tie) services
  - Resiliency (microgrid) services
- Comparison with costs occurs outside of LNBA calculator
  - •DER deployment, interconnection, integration costs

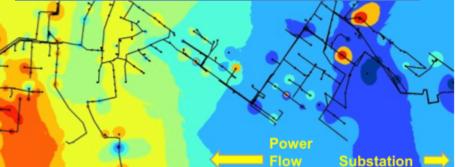
### **LNBA Value Components**



Value categories are refined and adjusted for local variation Starting with DERAC model and adding granularity and additional components



### **LNBA Value Components**




# Value categories are refined and adjusted for local variation

System-wide Average or Location Specific Benefit Value layers (Assessed as applicable to each layer)

**HV System Transmission** 

- + LV Transmission Territory
- + Sub-transmission Area
- + Distribution Planning Area
- + Distribution substation
- + Circuit
- + Line section
- + Transformer
- + Meter Load
- + BTM load
- = Total Stacked Value



### Values accrue at various defined levels

| ISO/ Market                 | 1. Frequency regulation                                           |
|-----------------------------|-------------------------------------------------------------------|
|                             | 2. Spin                                                           |
|                             | 3. Ramp                                                           |
|                             | 4. Black start                                                    |
|                             | 5. Real-time energy balancing                                     |
|                             | 6. Energy arbitrage                                               |
|                             | 7. Resource Adequacy                                              |
| Generation                  | 8. Intermittent resource integration: wind (ramp/voltage support) |
|                             | 9. VER/ PV shifting, Voltage sag, rapid demand support            |
|                             | 10. Supply firming                                                |
| istribution                 | 11. Peak shaving: load shift                                      |
|                             | 12. Transmission peak capacity support (deferral)                 |
|                             | 13. Transmission operation (short duration                        |
| 0/                          | performance, inertia, system reliability)                         |
| Transmission / Distribution | 14. Transmission congestion relief                                |
|                             | 15. Distribution peak capacity support (deferral)                 |
|                             | 16. Distribution operation (volt/VAR support)                     |
| _                           | 17. Outage mitigation                                             |
| Customer                    | 18. Time-of-use (TOU) energy cost management                      |
|                             | 19. Power quality                                                 |
|                             | 20. Back-up Power                                                 |

### **LNBA Use Cases**



# Heat Map of Potential Optimal Locations

- Public/Indicative values
- Generic OR DER Specific
- No DER Costs Included
- Visual heat map to inform DER providers and stakeholder of locations where DERs may be most valuable.

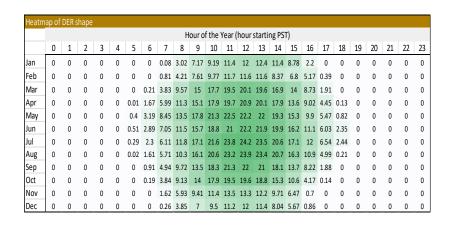
# Prioritization for DER Deferral Opportunities

- Confidential values
- Generic OR DER Specific
- DER Costs May Be Included
- Use LNBA to identify & prioritize locations for deploying DERs

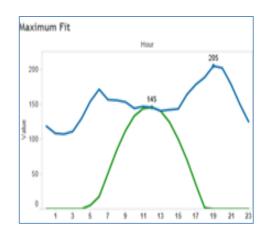
## Future Planning Use Cases?

### **Policy Planning**

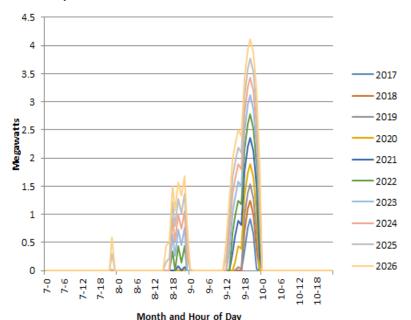
Heat map to inform policy makers of locations where DERs may be more valuable for targeted programs or incentives.


### **Utility Planning**

Combined with ICA
 Hosting Capacity map
 to evaluate and
 forecast potential DER
 grid impacts and net
 costs or savings.


### **LNBA Process Flow**




- Access the LNBA mapping layer that identifies deferral opportunity locations
- Select a project location to view its description and download distribution deferral datasets
- Compile a DER profile that meets the required deferral electric characteristics
- Upload DER profile in LNBA Tool to estimate avoided costs







#### **Required DER Electrical Characteristics**



### **LNBA Tool: Project Deferral Value Calculation**



First load forecast year (e.g.: 2016)

Discount Rate (%/vr)

Generic default inflation rate (%/yr)

2017 7.00% disc 2.00%

Case to use for allocated hourly costs (Base, Low, High):

Base

Deferral Yrs indicated by DER Dashboard

2

User input: Tool wide financial data

#### Project cost and need information

**Equipment Information** Location Identifier (user text) Location Mapping info (User text) Equipment type Equipment Inflation (%/yr) Revenue Requirement Multiplier O&M Inflation Rate (%/yr) Book life (yrs) O&M Factor (Annual O&M\$/Project Cost \$)

**Cost Information** Capital Cost (\$000) Incremental O&M Cost (\$000) Cost yr basis

2017 2 2018

Project install/commitment year

2019

4 2020

Item 1 DPA 1 Location 1234 **Primary Feeder** 2.0% 165.0% 2.0%

> 25 12.0%

> > Base

\$2,000.0

\$240.0

2015

2017

0.12

Low

\$3,000.0

\$1,800.0 \$216.0

\$360.0

0.12

High

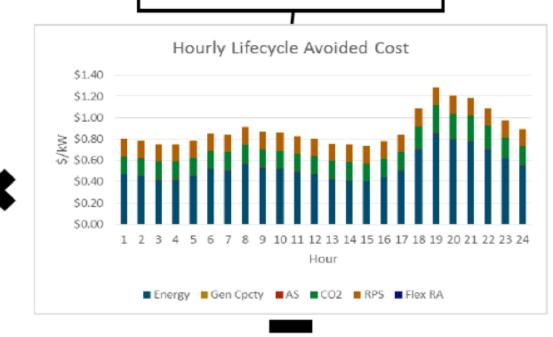
User input: Project specific details

Cumulative MW reduction needed for deferral

Base 0.26 0.38

0.51

0.64


### **LNBA Tool: Additional Avoided Cost Calculation**



User inputted hourly DER solution profile

| User Input for DER Hourly Shape |       |      |                   |  |  |  |  |
|---------------------------------|-------|------|-------------------|--|--|--|--|
| PST                             |       |      |                   |  |  |  |  |
| Hour Starting                   | Month | Hour | DER at meter (kW) |  |  |  |  |
| 1/1/15 12:00 AM                 | 1     | 0    | 0.00              |  |  |  |  |
| 1/1/15 1:00 AM                  | 1     | 1    | 0.00              |  |  |  |  |
| 1/1/15 2:00 AM                  | 1     | 2    | 0.00              |  |  |  |  |
| 1/1/15 3:00 AM                  | 1     | 3    | 0.00              |  |  |  |  |
| 1/1/15 4:00 AM                  | 1     | 4    | 0.00              |  |  |  |  |
| 1/1/15 5:00 AM                  | 1     | 5    | 0.00              |  |  |  |  |
| 1/1/15 6:00 AM                  | 1     | 6    | 0.00              |  |  |  |  |
| 1/1/15 7:00 AM                  | 1     | 7    | 0.00              |  |  |  |  |
| 1/1/15 8:00 AM                  | 1     | 8    | 105.30            |  |  |  |  |
| 1/1/15 9:00 AM                  | 1     | 9    | 720.21            |  |  |  |  |
| 1/1/15 10:00 AM                 | 1     | 10   | 154.16            |  |  |  |  |
| 1/1/15 11:00 AM                 |       | 11   | 293.76            |  |  |  |  |
| 1/1/15 12:00 PM                 |       | 12   | 315.30            |  |  |  |  |
| 1/1/15 1:00 PM                  | 1     | 13   | 175.15            |  |  |  |  |
| 1/1/15 2:00 PM                  | 1     | 14   | 940.02            |  |  |  |  |
| 1/1/15 3:00 PM                  | 1     | 15   | 727.53            |  |  |  |  |
| 1/1/15 4:00 PM                  | 1     | 16   | 174.38            |  |  |  |  |
| 1/1/15 5:00 PM                  | 1     | 17   | 0.00              |  |  |  |  |
| 1/1/15 6:00 PM                  |       | 18   | 0.00              |  |  |  |  |
| 1/1/15 7:00 PM                  |       | 19   | 0.00              |  |  |  |  |
| 1/1/15 8:00 PM                  | 1     | 20   | 0.00              |  |  |  |  |
| 1/1/15 9:00 PM                  |       | 21   | 0.00              |  |  |  |  |
| 1/1/15 10:00 PM                 | 1     | 22   | 0.00              |  |  |  |  |
| 1/1/15 11:00 PM                 | 1     | 23   | 0.00              |  |  |  |  |

Calculated lifetime hourly avoided cost values



| Lifecycle Value from DER by Compon |              |  |  |
|------------------------------------|--------------|--|--|
|                                    | Circuit 1102 |  |  |
| Energy                             | \$1,998,095  |  |  |
| Gen Capacity                       | \$362,696    |  |  |
| Ancillary Services                 | \$18,462     |  |  |
| CO2                                | \$794,182    |  |  |
| RPS                                | \$808,743    |  |  |
| Flex RA                            | -\$168,364   |  |  |

### **LNBA Calculation Example**



- Deferral Value = (Full Cost of Asset \* RECC) +  $\Delta$  O&M
  - RECC Calculation
    - i = 2.5%, r = 7%, book life = 40 yrs.
    - RECC = 4.5%/1.07 \*1.07^40/(1.07^40 1.025^40) = 5.12%
  - Full Cost = (Direct Capital \* RRScaler) = (\$8M\* 150%) = \$12M
- Deferral Value = (\$12M \* 5.12%) + \$0.20M = \$0.81M

Source: E3, http://drpwg.org/wp-content/uploads/2016/07/LNBA-Working-Group-072616\_FINALVERSION.pptx

### Deferral Value for one year

| Item              | Variable         |    | Low   |  |  |
|-------------------|------------------|----|-------|--|--|
| Investment Cost   | TDCapital (\$M)  | \$ | 8.00  |  |  |
|                   | RECC             |    | 5.12% |  |  |
|                   | RRScaler         |    | 150%  |  |  |
| Incremental O&M   | ∆O&M (\$M/yr)    | \$ | 0.20  |  |  |
| One year Deferral | SavingsOne (\$M) | \$ | 0.81  |  |  |

Value expressed in alternate metrics

| Value                   | Variable           | Low |      |  |
|-------------------------|--------------------|-----|------|--|
| Two year Deferral       | SavingsTotal (\$M) | \$  | 1.60 |  |
| MW Need (Hi, Med, Lo)   | MW Need (2 yr)     |     | 8    |  |
| Discrete savings per kW | DiscreteperkW      | \$  | 199  |  |

### **LNBA - Distribution Marginal Cost Impacts**



Variable Costs

Fixed Costs / Capacity

**Grid Side** 

**Supply Side** 

Voltage
KVAR
Power Factor
Line Losses
Limiting Factors

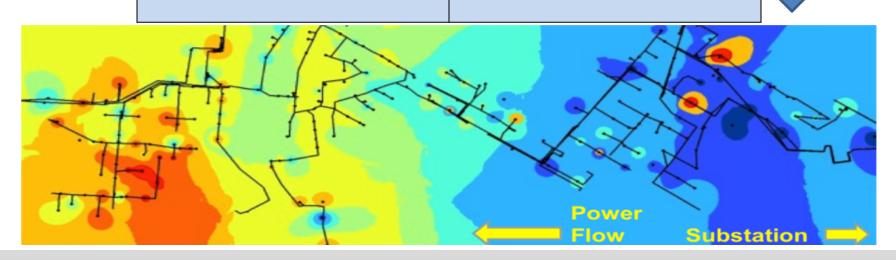
Ancillary Services
Plant Following
Wind/ Cloud Firming
Current hour LMP

Asset Protection
Circuit Capacity Deferral
Bank Capacity Deferral
Future Congestion

Capacity Premium

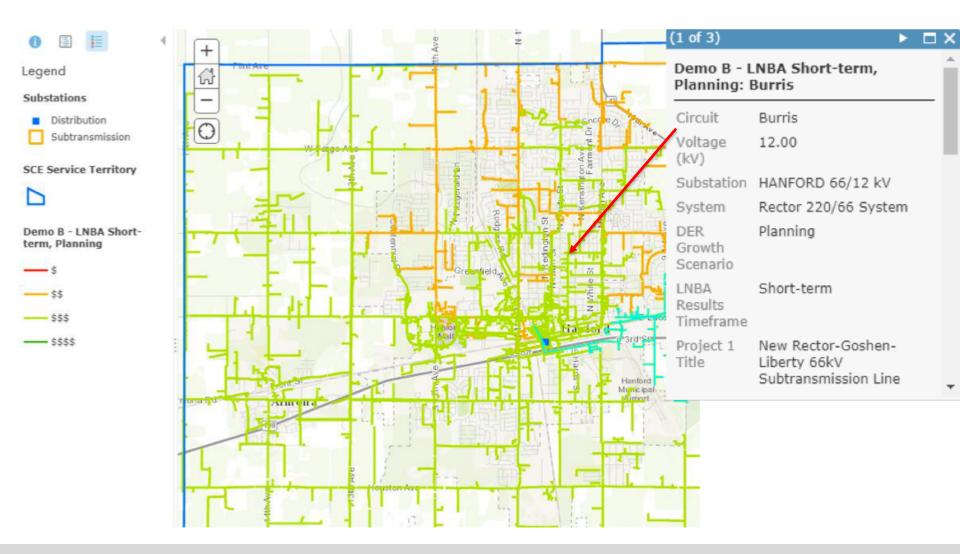
10 Year LMP Forecasts

Future Covariance


Time

**Minutes** 

Hours


**Months** 

Years



### **Heatmap of LNBA Results**





### Shift transmission investments into the distribution grid



- Under a business as usual scenario, new incremental transmission investments are likely to reach \$80 billion over the next 20 years for California ratepayers
- Levelized over 20 years, this approaches 3 cents/kWh or roughly 50% of the wholesale cost of electricity
- Avoiding half of these costs would free up roughly \$40 billion for ratepayers or modernizing the distribution grid, including local renewables, storage, etc.



# **Questions?**



### Mission

To accelerate the transition to renewable energy and a modern grid through technical, policy, and project development expertise.

### **Board of Advisors**

#### **Jeff Anderson**

Co-founder and Former ED, Clean Economy Network

#### **Josh Becker**

General Partner and Co-founder, New Cycle Capital

#### **Pat Burt**

CEO, Palo Alto Tech Group; Councilman & Former Mayor, City of Palo Alto

#### **Jeff Brothers**

CEO, Sol Orchard

### **Jeffrey Byron**

Vice Chairman National Board of Directors, Cleantech Open; Former Commissioner, CEC

#### **Rick DeGolia**

Senior Business Advisor, InVisM, Inc.

### John Geesman

Former Commissioner, CEC

#### **Eric Gimon**

Independent Energy Expert

#### **Patricia Glaza**

Principal, Arsenal Venture Partners

#### Mark Z. Jacobson

Director of the Atmosphere/Energy Program & Professor of Civil and Environmental Engineering,
Stanford University

#### **Dan Kammen**

Director of the Renewable and Appropriate Energy Laboratory at UC Berkeley; Former Chief Technical Specialist for RE & EE, World Bank

### **Fred Keeley**

Treasurer, Santa Cruz County, and Former Speaker pro Tempore of the California State Assembly

#### **Felix Kramer**

Founder, California Cars Initiative

### **Amory B. Lovins**

Chairman and Chief Scientist, Rocky Mountain
Institute

#### L. Hunter Lovins

President, Natural Capitalism Solutions

#### **Ramamoorthy Ramesh**

Founding Director, DOE SunShot Initiative

#### **Governor Bill Ritter**

Director, Colorado State University's Center for the New Energy Economy, and Former Colorado Governor

### **Terry Tamminen**

Former Secretary of the California EPA and Special Advisor to CA Governor Arnold Schwarzenegger

#### Jim Weldon

Technology Executive

### **R. James Woolsey**

Chairman, Foundation for the Defense of Democracies; Former Director of Central Intelligence (1993-1995)

#### **Kurt Yeager**

Vice Chairman, Galvin Electricity Initiative; Former CEO, Electric Power Research Institute