

PAEC Technical Advisory Committee Meeting #2

PAEC Master Community Design and Case Study

Clean Coalition Dr. Frank Wasko, Program Director Wendy Boyle, Grants & Contract Manager Malini Kannan, Program Engineer, Appraccel Justine Burt, Founder Kristin Kuntz Duriseti, Ph.D.

GoToWebinar FAQ

Clean Coalition

- Webinar recording and slides will be sent to registered attendees within two business days
- All webinars are archived on www.clean-coalition.org and the Clean Coalition's YouTube channel
- Submit questions in the Questions window at any time (window view varies by operating system and browser)
- Questions will be answered during the Q&A portion of the event
- Contact Josh Valentine for webinar questions: josh@clean-coalition.org

	Screen Sharing	
	Dashboard	
	Attendees: 1 out of 1001	
	Audio	
	Webcam	
	Questions	
	Show Answered Questions	
	Question Asker	
Ty	pe answer here	
0	Cond Beluntally 00 Cond To All	
25	Send Privately Send To All	
	Polls	
	Handouts: 0 of 5	
	Chat	
М	Chat	
1	Welcome to the Clean Coalition's Transmission Access Charges (TAC) webinar. Thanks for joining us! Please enter any questions in the chat box in your GoToWebinar dashboard and we will try to answer them during the Q&A session at the end of the webinar.	
1		
1	pe message here.	
1		
Ту	pe message here.	
Ту	pe message here. To: Organizer(s) Only 💽 😿 Ser Local renewables are getting robbed: A Clear Coalition webinar	

PAEC collaborators to date

Clean Coalition

PAEC Reports

Clean Coalition

Task 2.2 - Best Practices report (Menlo Spark)

Task 2.4 - Gap Analysis (Menlo Spark)

Task 2.6 - Benefit-Cost Analysis Report of Potential Ordinances (DNV GL)

Task 2.8 - Interview with Public Agencies, Installers, and Vendors (Sovereign Energy)

Task 2.10 - Policy Recommendations & Guidelines for Permitting Energy Storage (Sovereign Energy)

Task 2.12 - Model Ordinances for San Mateo County (DNV GL)

Task 2.14 - AEC Regulatory and Permitting Recommendations (DNV GL)

Task 3.II - Backup Power Valuation Methodology (Sovereign Energy)

Task 3.2 – Lending, Customer Compensation, and Government Incentive Report: Strategies and Incentives Available to Advanced Energy Communities In and Around San Mateo County, California (High Noon Advisors)

Task 3.4 + 3.10 - Summary of Financial Pro-Forma Delineating the Cost of Capital, Tenor, Risk/Return Profile, and Value Streams for Behind the Meter Energy Storage (Sovereign Energy)

Task 3.6 - Dispatch Model for Energy Storage System (Sovereign Energy)

Task 3.12 - Successful Energy Storage Financing Program (Sovereign Energy)

Task 3.14 – Economic Benefit-Cost Analysis of Energy Efficiency and Fuel Switching Measures: Prototypical Residential Multifamily Building (DNV GL)

Task 3.14 – Economic Benefit-Cost Analysis of Energy Efficiency and Fuel Switching Measures: Prototypical Municipal Building (Fire Station) (DNV GL)

Task 3.14 – Economic Benefit-Cost Analysis of Energy Efficiency and Fuel Switching Measures: Prototypical Office Building (DNV GL)

Task 3.14 – Economic Benefit-Cost Analysis of Energy Efficiency and Fuel Switching Measures: Prototypical Retail Building (DNV GL) Task 3.14 – Economic Benefit-Cost Analysis of Energy Efficiency and Fuel Switching Measures: Prototypical School Building (DNV GL)

Task 3.16 - Economic Benefit-Cost Analysis of Electric Vehicle Charging Infrastructure (Sven Thesen & Associates)

Task 3.18 - Energy Tracking/Benchmarking Tool Report – Building Energy Management Systems: An Advanced Energy Solution for Commercial Buildings (Office of Sustainability, County of San Mateo)

Task 3.i - Report Summarizing Literature Review & ISO/RTO Tariff Analysis (Sovereign Energy)

Task 4.2 – Best Practices: Interconnection for Local, Commercial-Scale, Renewable Energy Projects – Streamlining the Interconnection of Advanced Energy Communities to the Grid (Clean Coalition)

Task 4.4 – Design of Pilot for Testing Streamlined Interconnection Procedures (Clean Coalition)

Task 5.2 – Solar Emergency Microgrid Site Design and Deployment Plan (Clean Coalition)

Task 6.1 – Potential Locations for the Electric Vehicle Charging Infrastructure Master Plan (Sven Thesen & Associates)

Task 7.1 – Technical and Economic Feasibility of Sustainability Features for the Atherton Civic Center Report (WRNS Studio)

Task 7.2 - Scorecard of Sustainability Features (Clean Coalition)

Task 8 - Solar Siting Survey (Clean Coalition)

Task 10 – PAEC Community Master Plan (Clean Coalition)

Task 11 - Evaluation of Project Benefits (Clean Coalition)

Task 12.2 - Initial Fact Sheet (Clean Coalition)

Task 12.9 - Final Technology/Knowledge Transfer Plan (Clean Coalition)

Blog Posts:

- Blog #1 Peninsula Advanced Energy Community launches, will provide framework for the future of clean energy, posted
- Blog #2 Palo Alto is aiming high by going low... carbon
- Blog #3 (Task 2) The reality of implementing 100% clean local energy
- Blog #4 Solar Siting Survey of the San Mateo County Region and Core PAEC Region
- Blog #5 Palo Alto's Jewish Community Center: Heating and cooling in newer, cleaner ways
- Blog #6 A pathway to zero net energy: Atherton, California
- Blog #7 Shaping electric vehicle charging infrastructure in Palo Alto
- Blog #8 Best practices encouraging clean local energy deployment in California
- Blog #9 Connecting renewables to the grid faster... much faster
- Blog #10 Collaborating and innovating to expand clean local energy in San Mateo County
- Blog #11 No heat molecule left behind: Stanford's district-level heat recovery system
- Blog #12 What Puerto Rico teaches us about power resilience for all communities
- Blog #13 Building owners may be losing money by not investing in energy efficiency
- Blog #14 Model ordinances: Showing the way to a clean energy future
- Blog #15 Energy storage is about to take off
- Blog #16 Keeping the lights on after natural disasters
- Blog #17 Splitting up with split incentives: How green leases remove barriers to energy efficiency in commercial buildings

News Article:

"New solar siting survey identifies 65 megawatts of solar potential in southern San Mateo County, California", posted May 17, 2017

"Solutions for connecting local renewable energy to the grid more quickly", posted 9/28/2017

Visit <u>www.clean-coalition.org</u>

PAEC Webinars

Webinar Title	Date
Economics for energy efficiency and fuel switching measures for commercial-scale buildings	January 2018
How Solar Siting Surveys identify the potential for local solar generation	February 2018
The Green Lease and other innovative approaches for energy efficiency	March 2018
Electric vehicle charging infrastructure master plan	April 2018
Best practices for streamlining interconnection	May 2018
Community Master Design for PAEC Phase 2	June 2018

PAEC Workshops

Event	Date
RICAPS Working Group Meeting	8/23/16
RICAPS Multi-City Working Group	2/28/17
Green Lease Language Round Table	5/22/17
RICAPS Multi-City Working Group	6/20/17
RICAPS Multi-City Working Group	7/25/17
RICAPS Multi-City Working Group	8/22/17
Integration Capacity Analysis presentation	8/22/17

PAEC CEC Reports: approximately 200

Blog Posts:

Total of 17 to date; various topics supporting and promoting advanced energy communities activities.

News Articles:

Total of 3 to date: Solar Siting Survey, Solar Emergency Microgrid, and Solutions for connecting local renewable energy to the grid more quickly.

Webinars:

Total of 4 completed, with 2 upcoming webinar scheduled for May and June 2018.

Workshops:

Total of 7 (RICAPS workshops which include project updates, Solar Siting Survey, Interconnection best practices, recommended model ordinances for San Mateo County, energy efficiency and fuel switching measures on 5 prototypical buildings, Green Lease Language, Integration Capacity Analysis).

Agenda

- 9:00 AM Welcome & Introductions Craig Lewis, Executive Director, Clean Coalition
- **9:10 AM** Agenda and PAEC Project Overview Dr. Frank Wasko, Program Director, Clean Coalition, and PAEC Project Manager
- 9:20 AM Task 10, PAEC Master Community Design Presenter: Clean Coalition Malini Kannan, Program Engineer and Task Lead:
 - The development of the Clean Coalition's Master Community Design showcasing our proposed PAEC2 project
- 10:20 AM Task 10 Q&A
- **10:50 AM Task 9, PAEC Case Study Presenters**: Appraccel Justine Burt, Founder & CEO and Task Lead, Kristin Kuntz Duriseti, Ph.D and Task Lead:
 - Describing and analyzing the actions, challenges, and lessons learned in planning, designing, and obtaining approval for the PAEC
 - How the development of the PAEC will impact savings on electrical distribution infrastructure
- 11:50 AM Task 9 Q&A, Next Steps, and Closing Remarks
- 1:00 PM Adjourn

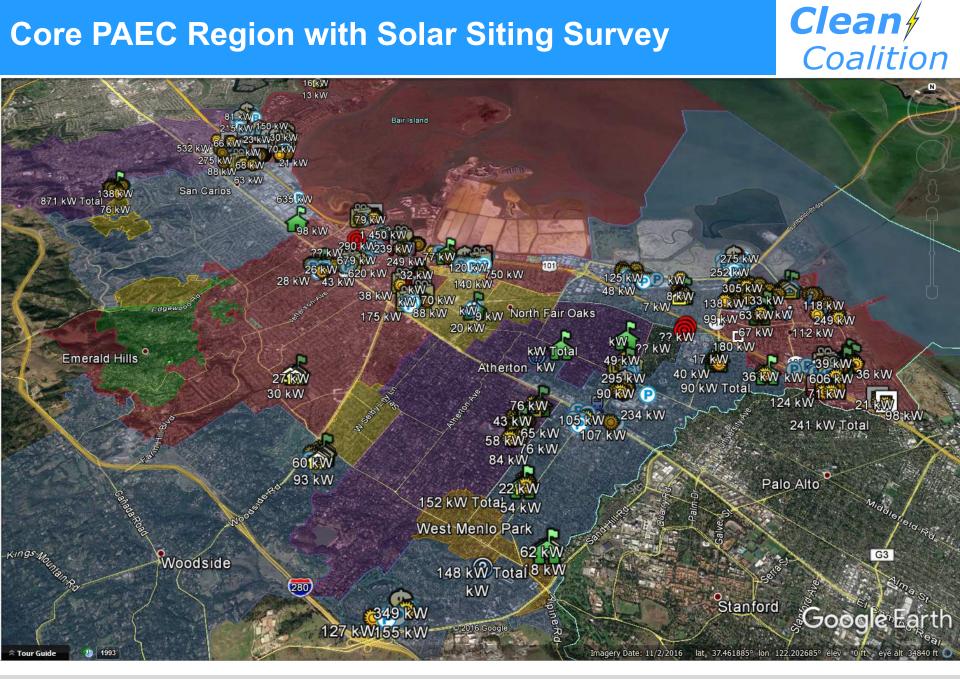
PAEC T10: Master Community Design

Redwood City Community Microgrid: Innovation and Resilience

Malini Kannan Programs Engineer Clean Coalition 650-533-8039 mobile malini@clean-coalition.org

Making Clean Local Energy Accessible Now

3 May 2018

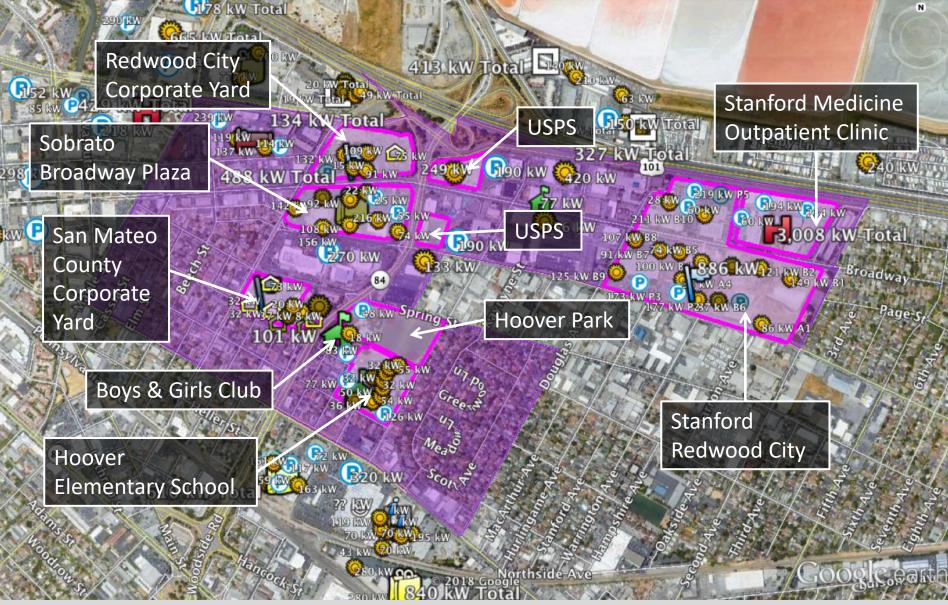

- F Goal: Develop a Master Community Design showcasing the Peninsula Advanced Energy Community.
 - Scoping and conceptual design have been successfully completed.
 - Design includes the deployment of model Solar Emergency Microgrids, Community Microgrids, and large scale EV charging deployments.
 - Designs span various use-cases and expected ownership models.
- Objective: Draft PAEC Design Report which will identify locations of the proposed PAEC elements, describe the synergistic AEC, and describe grid connection locations and methods.
 - Five sites in Redwood City have have completed scoping and conceptual design.
 - The PAEC elements will be connected behind the meter of each site, with several dedicated distributions lines used to connect sites during a grid outage.
 - Synergies include resilience through emergency backup power from microgrid configurations, lower project cost resulting from deploying DER together, and improving the bankability of certain DER by bundling financing.
- This scope of work is on track to be fully completed on time and within budget.

Synergies:

- Lower total project cost and improved bankability by bundling DER deployments.
- Implementing Community Microgrids at critical facilities and for critical loads only ensures that communities can receive resilience, while the cost for this resilience is minimized.
- Designing Community Microgrids for sites that have already implemented energy efficiency measures can save money.
- Integrating a battery into a site with EV charging can reduce demand charges and reduce the impact of high-power charging on the grid
- Permitting: Redwood City Planning and Permitting Departments do not anticipate any roadblocks with permitting photovoltaics, lithium battery energy storage nor electric vehicle chargers.
- Interconnection: Proposed generating assets (solar and energy storage) can be interconnected within PG&E service territory under the NEM2 or NEM Multiple tariffs.

Core PAEC Region with Solar Siting Survey

Redwood City Community Microgrid Conceptual Diagram


Redwood City Disadvantaged Community and Community Microgrid Sites

Redwood City Disadvantaged Community and Community Microgrid Sites

Site Name	Meters or Buildings	Critical Loads	NEM Solar [kW AC]	FIT Solar [kW AC]	Total Solar [kW AC]	Battery [kW]	Battery [kWh]	EVCI (Level 2)
Stanford Redwood City Phase 1	P1, B1-B4	Campus emergency response	886	0	886	251	2,100	52
	Hoover School	Shelter & food service	73	203	276	29	150	20
Hoover Cluster	Boys & Girls Club	Shelter & food service	11	90	101	0	0	10
	Hoover Park	Equipment staging	0	0	0	0	0	0
Redwood City Corporate Yard	Redwood City Corporate Yard	Road and public facility maintenance and repair	136	352	488	58	360	*4
	SMC Yard Meter 1	Road and public facility maintenance and repair	65	0	65	58	240	0
San Mateo County Corporate Yard	SMC Yard Meter 2		33	121	154	0	0	*4
(SMC Yard)	SMC Yard Meter 3		0	79	79	0	0	0
Sobrato Broadway Plaza	Sobrato Broadway Plaza (multiple meters)	Low income housing	0	1,197	1,197	TBD	TBD	TBD
	Sobrato CVS	Pharmacy & grocery	Û	83	83	TBD	TBD	TBD
New Deployments '	New Deployments TOTAL			2,125	3,329	396	2,850	82

With net metering, only 1.2 MW can be deployed.

With a new FIT program, an **additional 2.1 MW** of local, renewable generation could be deployed in a disadvantaged community.

- Conduct site walk to determine solar siting potential, energy storage and EV charging locations, and details of existing electrical infrastructure (meters, AC bus sizing, etc.)
- Determine on-site load for each meter using 15 minute interval data where available.

- Size and model multiple PV systems using PVwatts:
 - Ist system: full-scale PV deployment- use all feasible on-site rooftop and parking lot/ open space as defined in the Solar Siting Survey and site walk.
 - ⁷ 2nd system: net-metered PV system- determine system size based on utility bills.
 - ⁷ 3rd system: net-metered PV system with EVCI load- if the site is a candidate for EV charging, combine the existing load profile with the project load profile of additional EV chargers.
 - 4th system: FIT PV system- system size required to take full advantage of the available on-site space, but that exceeds the annual generation allowed by NEM2 interconnection.

- Vised Geli's ESyst tool to determine the optimum energy storage size for a grid-connected system that takes advantage of peak shaving and demand charge management.
- The figure below shows the projected savings for one of the solutions for RWC Yard- 150 kW of PV, and 58kW 240kWh of energy storage.

Clean

Coalition

- To properly size the system for grid-island mode and use of the Community Microgrid during emergency operations, the critical load profile was input into HomerPRO.
- Critical load is 10% of normal load. The on-site load was decreased by 10% proportionally.
- A ground-up energy budget would be more useful and reliable, however, we have not yet developed this type of load profile.

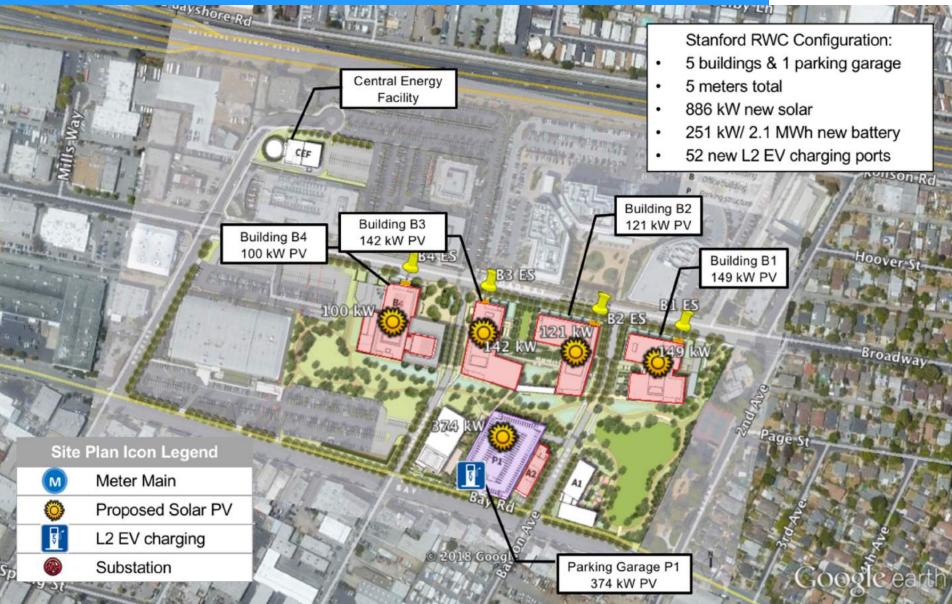
Simulation inputs:

- Critical load profile
- Total on-site solar
- Vptime required- 100%
- Simulation outputs:
 - Optimal energy storage system sizing, based on optimization of net present cost of the system

Site Name	Meters or Buildings	Critical Loads	NEM Solar [kW AC]	FIT Solar [kW AC]	Total Solar [kW AC]	Battery [kW]	Battery [kWh]	EVCI (Level 2)
Stanford Redwood City Phase 1	P1, B1-B4	Campus emergency response	886	0	886	251	2,100	52
	Hoover School	Shelter & food service	73	203	276	29	150	20
Hoover Cluster	Boys & Girls Club	Shelter & food service	11	90	101	0	0	10
	Hoover Park	Equipment staging	0	0	0	0	0	0
Redwood City Corporate Yard	Redwood City Corporate Yard	Road and public facility maintenance and repair	136	352	488	58	360	*4
	SMC Yard Meter 1	Road and public facility maintenance and repair	65	0	65	58	240	0
San Mateo County Corporate Yard	SMC Yard Meter 2		33	121	154	0	0	*4
(SMC Yard)	SMC Yard Meter 3		0	79	79	0	0	0
Sobrato Broadway Plaza	Sobrato Broadway Plaza (multiple meters)	Low income housing	0	1,197	1,197	TBD	TBD	TBD
	Sobrato CVS	Pharmacy & grocery	Û	83	83	TBD	TBD	TBD
New Deployments '	New Deployments TOTAL			2,125	3,329	396	2,850	82

With net metering, only 1.2 MW can be deployed.

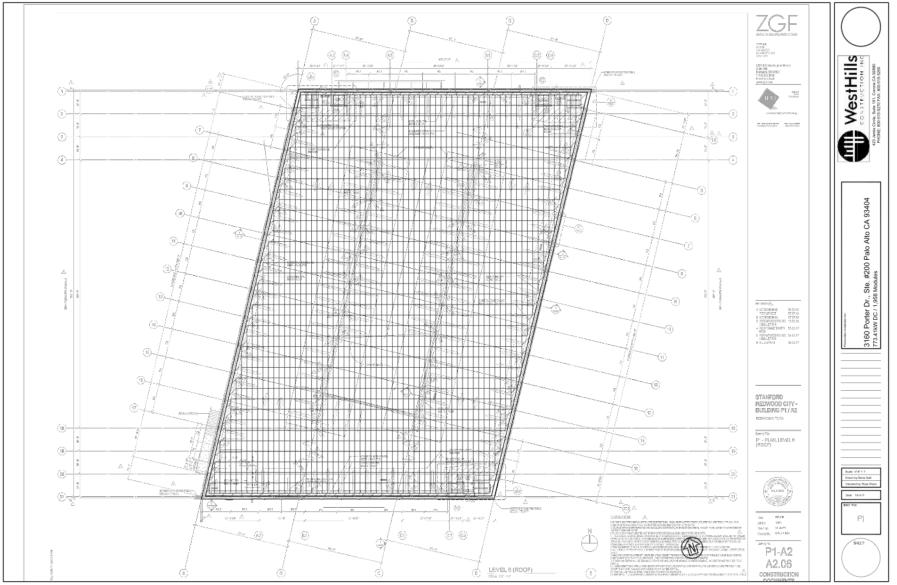
With a new FIT program, an **additional 2.1 MW** of local, renewable generation could be deployed in a disadvantaged community.


Stanford RWC Phase 1 and 2

Clean Coalition

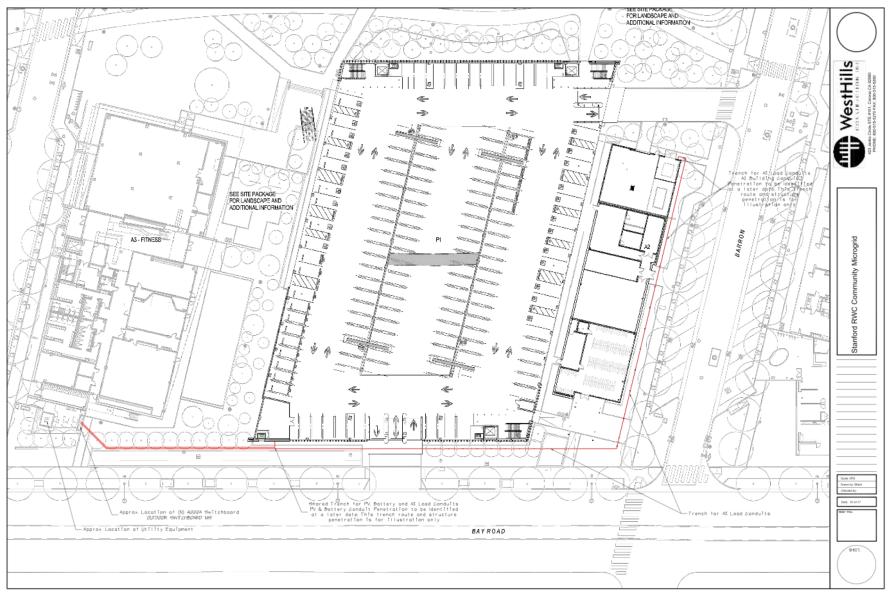
Stanford RWC Phase 1 Overview Map

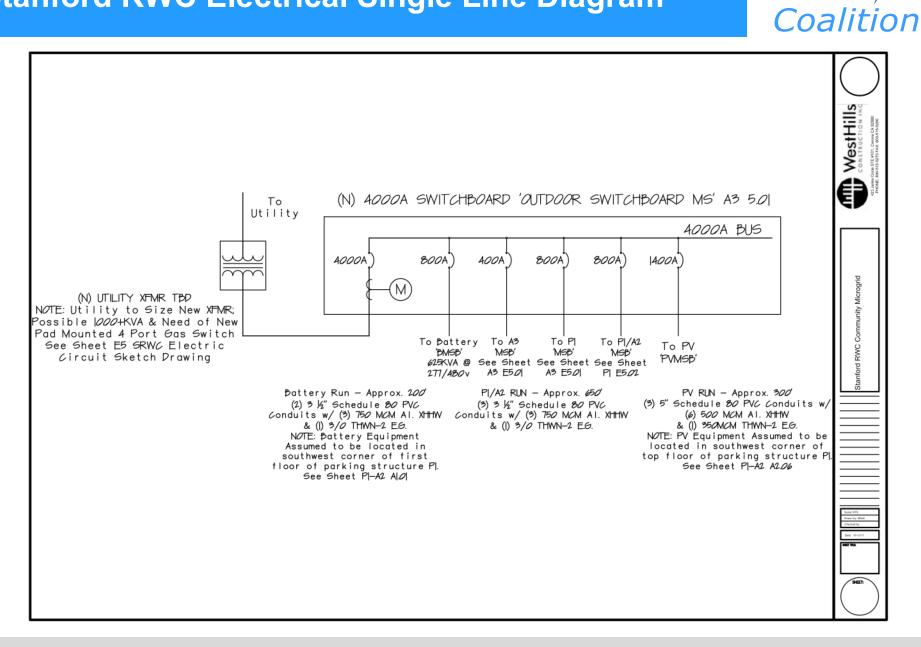
Clean Coalition



Stanford RWC Phase 1 feeders & switching

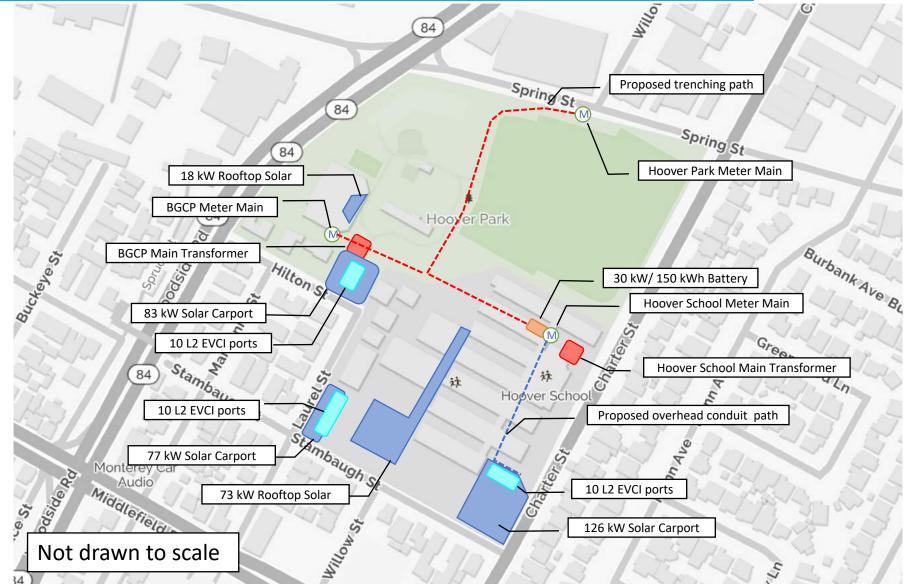
Clean Coalition snore Rd Stanford RWC Configuration: 5 buildings & 1 parking garage AULT 5 meters total 886 kW new solar 251 kW/ 2.1 MWh new battery 52 new L2 EV charging ports Carking structure 10 2.0 B4 ES 100Ve B3 ES LOO RAV Broadway Page St Site Plan Icon Legend M Meter Main ٢ Proposed Solar PV E V L2 EV charging © 2018 Google Substation


Stanford RWC Solar Layout and Sizing



Stanford RWC Trenching Path CAD Drawing

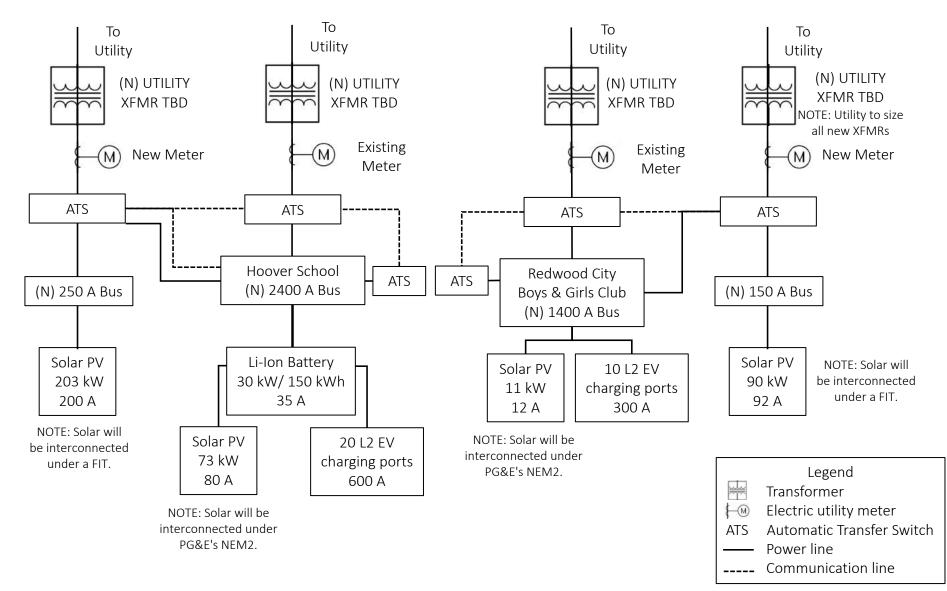
Clean Coalition


Stanford RWC Electrical Single Line Diagram

Clean

Hoover Cluster Conceptual Diagram

Clean Coalition


Hoover Cluster Detailed Map

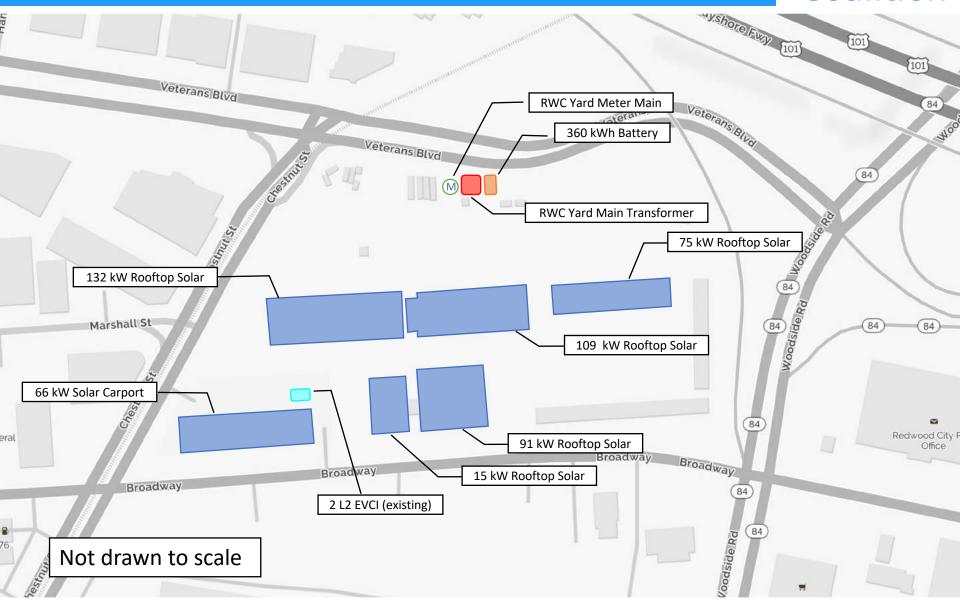
Clean Coalition

Hoover Cluster Single Line Drawing Block Diagram

The Final Master Community Design Report will contain:

- Finalized system sizes for solar and battery deployments
- Find the second seco
- Conceptual drawing and conceptual single line drawing demonstrating the design of the utility infrastructure that will connect each of the sites together for the full Redwood City Community Microgrid
- Interconnection details for each new generating asset
- Total project cost and economics for each site which will demonstrate the commercial viability of the project
- Availability of funding and financing required to deploy the project at each site
- In addition to the above, the Final Master Community Design Report will address specific feedback from the CEC regarding the Draft report.

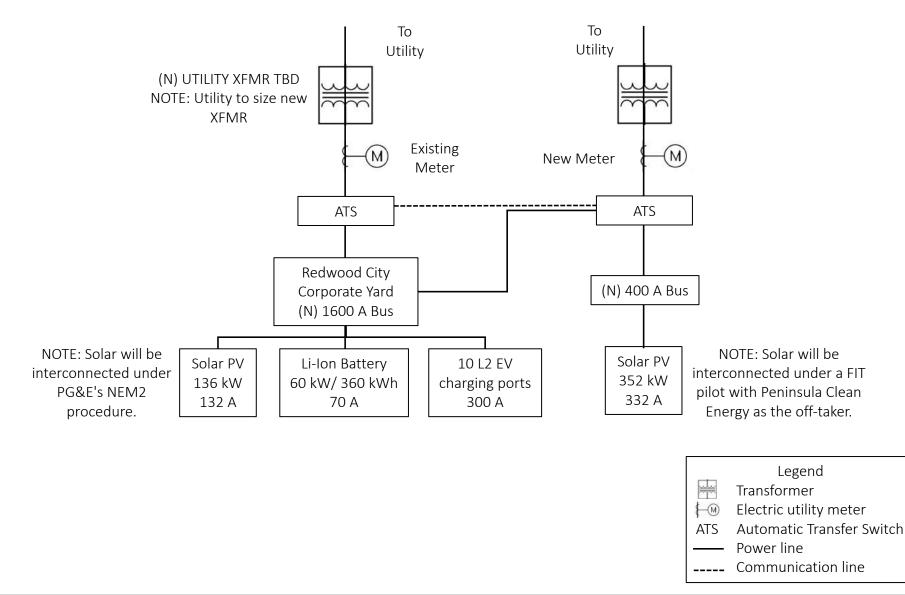
Thank You!


Malini Kannan Programs Engineer Clean Coalition

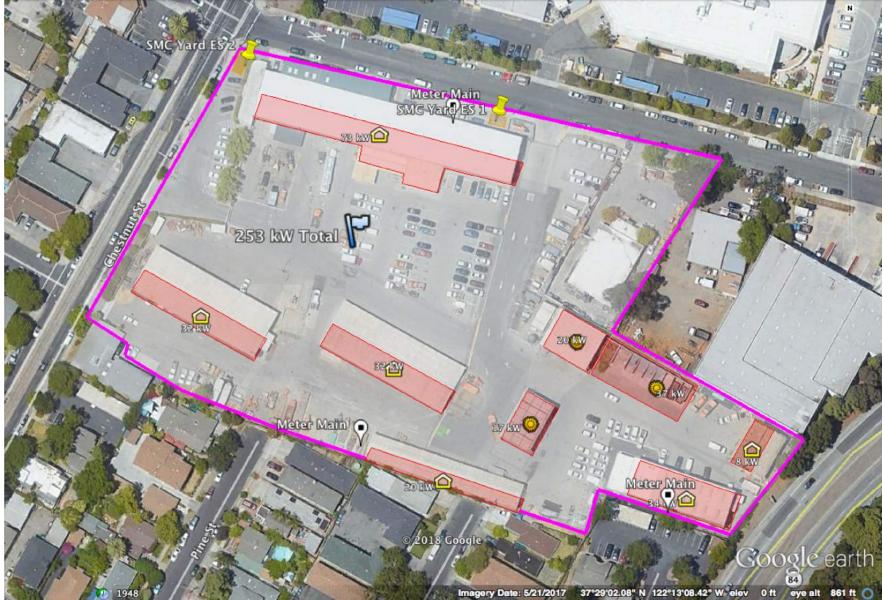
FBACK UP SLIDES

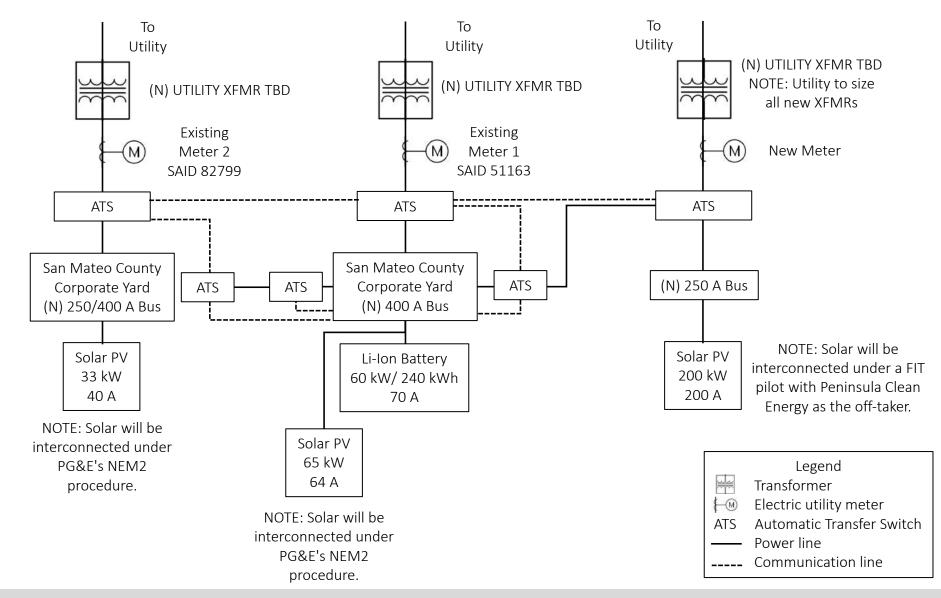
Redwood City Corporate Yard Conceptual Drawing

Clean Coalition


Redwood City Corporate Yard overview map

Clean Coalition


Redwood City Corporate Yard Single Line Drawing Block Diagram


San Mateo County Corporate Yard overview map

Clean Coalition

San Mateo County Corporate Yard Single Line Drawing Block Diagram

Sobrato Broadway Plaza and CVS overview map

Clean Coalition

Task 9 PAEC Case Study

Justine Burt, Founder & CEO, Appraccel Kristin Kuntz Duriseti, Ph.D.

Making Clean Local Energy Accessible Now

3 May, 2018

PAEC Reports

Clean Coalition

Task 2.2 - Best Practices report (Menlo Spark)

Task 2.4 - Gap Analysis (Menlo Spark)

Task 2.6 - Benefit-Cost Analysis Report of Potential Ordinances (DNV GL)

Task 2.8 - Interview with Public Agencies, Installers, and Vendors (Sovereign Energy)

Task 2.10 - Policy Recommendations & Guidelines for Permitting Energy Storage (Sovereign Energy)

Task 2.12 - Model Ordinances for San Mateo County (DNV GL)

Task 2.14 - AEC Regulatory and Permitting Recommendations (DNV GL)

Task 3.II - Backup Power Valuation Methodology (Sovereign Energy)

Task 3.2 – Lending, Customer Compensation, and Government Incentive Report: Strategies and Incentives Available to Advanced Energy Communities In and Around San Mateo County, California (High Noon Advisors)

Task 3.4 + 3.10 - Summary of Financial Pro-Forma Delineating the Cost of Capital, Tenor, Risk/Return Profile, and Value Streams for Behind the Meter Energy Storage (Sovereign Energy)

Task 3.6 - Dispatch Model for Energy Storage System (Sovereign Energy)

Task 3.12 - Successful Energy Storage Financing Program (Sovereign Energy)

Task 3.14 – Economic Benefit-Cost Analysis of Energy Efficiency and Fuel Switching Measures: Prototypical Residential Multifamily Building (DNV GL)

Task 3.14 – Economic Benefit-Cost Analysis of Energy Efficiency and Fuel Switching Measures: Prototypical Municipal Building (Fire Station) (DNV GL)

Task 3.14 – Economic Benefit-Cost Analysis of Energy Efficiency and Fuel Switching Measures: Prototypical Office Building (DNV GL)

Task 3.14 – Economic Benefit-Cost Analysis of Energy Efficiency and Fuel Switching Measures: Prototypical Retail Building (DNV GL)

Task 3.14 – Economic Benefit-Cost Analysis of Energy Efficiency and Fuel Switching Measures: Prototypical School Building (DNV GL)

Task 3.16 - Economic Benefit-Cost Analysis of Electric Vehicle Charging Infrastructure (Sven Thesen & Associates)

Task 3.18 - Energy Tracking/Benchmarking Tool Report – Building Energy Management Systems: An Advanced Energy Solution for Commercial Buildings (Office of Sustainability, County of San Mateo)

Task 3.i - Report Summarizing Literature Review & ISO/RTO Tariff Analysis (Sovereign Energy)

Task 4.2 – Best Practices: Interconnection for Local, Commercial-Scale, Renewable Energy Projects – Streamlining the Interconnection of Advanced Energy Communities to the Grid (Clean Coalition)

Task 4.4 – Design of Pilot for Testing Streamlined Interconnection Procedures (Clean Coalition)

Task 5.2 – Solar Emergency Microgrid Site Design and Deployment Plan (Clean Coalition)

Task 6.1 – Potential Locations for the Electric Vehicle Charging Infrastructure Master Plan (Sven Thesen & Associates)

Task 7.1 – Technical and Economic Feasibility of Sustainability Features for the Atherton Civic Center Report (WRNS Studio)

Task 7.2 - Scorecard of Sustainability Features (Clean Coalition)

Task 8 - Solar Siting Survey (Clean Coalition)

Task 10 – PAEC Community Master Plan (Clean Coalition)

Task 11 - Evaluation of Project Benefits (Clean Coalition)

Task 12.2 - Initial Fact Sheet (Clean Coalition)

Task 12.9 - Final Technology/Knowledge Transfer Plan (Clean Coalition)

Clean/

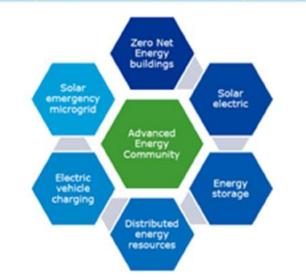
Coalition

- V. Define AEC
- VI. Policy goals and existing regulatory structure
- VII. Key challenges
- VIII.Best practices
- IX. Key findings
- X. Case studies
- XI. Tools to accelerate to AECs
- XII. Project benefits
- XIII.Areas for future study Appendix

PAEC Project Goals

Reduce 25 MW of peak energy across southern San Mateo County

Reduce natural gas and minimize need for expensive utility upgrades



Create model project with scalable project elements

GFO-15-312

- Minimize need for new energy infrastructure
- Energy savings thru ZNE
- Grid reliability and resiliency
- Easier grid integration
- Replicable and scalable
- Affordable access through DER and EE for all electric ratepayers

Key Components of an Advanced Energy Community

State goals

- AB 32 (greenhouse gas emissions)
- Title 24 and CalGreen (energy efficiency)
- CPUC Long-Term EE Strategic Plan (ZNE)
- CPUC Integrated Resource Plan and Long-Term Procurement Plan
- AB 117: Community Choice Aggregation
- AB 2565: EVCI in rental properties
- AB 2514: Energy Storage

Local jurisdictions

- San Mateo County
- Redwood City
- Atherton
- Menlo Park
- East Palo Alto

Economic

- Life cycle cost assessments
- Capital v operating costs
- Split incentives
- Falling prices not fallen far enough
- Economies of scale
- Limited financing programs
- Who should fund AECs?

Policy

- Inconsistent permitting requirements
 - Streamlining interconnection
- Insufficient staffing
 - Review increasing number of EE upgrades, DG, EV charging, microgrids, storage
 - Budgets, planning, permitting, staffing

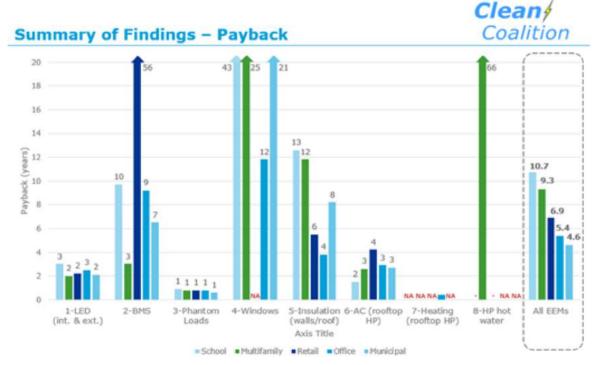
- Renewables
- Energy efficiency
- Zero net energy
- EV charging infrastructure
- Energy storage
- Economics (CCA, on-bill financing, fees)
- Policy (ZNE, retrofits)
- Technical

Renewable Energy (RE)	Energy Efficiency (EE)	Zero Net Energy (ZNE)	Electric Vehicle Charging Infrastructure (EVCI)	Additional Clean Energy Measures			
Model Municipal Ordinance Options							
Solar Rooftops [RE1] (mandatory ordinances) could also include solar water heaters. cool roofs, or other alternatives, e.g., San Mateo Solar Carports [RE2] over parking, could be coupled with energy storage and/or EV charging, e.g. Palo Alto or Green Charge Zoning or Building Codes [RE3] requiring 100% Renewable Energy, e.g. Menlo Park, covering electricity & gas Solar or Zero Carbon Water Heaters [RE4] requiring new or replacement water heaters to be solar (e.g., Hawaii) or a non-fossil fuel alternative such as heat pumps	Reach Codes for New Construction [EE1] Palo Alto & Santa Monica (e.g. 15% efficiency improvement over title 24) Point of Sale [EE2] energy audits and disclosure, e.g. Berkeley and Austin ECBO: Existing Commercial Building Benchmarking Ordinance [EE3], e.g. San Francisco Buildings report energy use + audit each year or retro- commissioning every 5 years Other Mandatory Requirements Higher efficiency equipment, etc.	Reach Codes [ZNE1] for CA ZNE. e.g., Santa Monica Financial Incentives [Fees2]: New Climate Impact Fee, fully refunded for ZNE. e.g., Watsonville	City Ordinance & Zoning [EVC11]: Minimum parking spaces required with pre-wiring or EV Chargers for new homes. multi-family. commercial or parking. e.g. City of San Francisco	Fees [Fees1] for Fossil Fuel Use or Carbon, e.g., Palo Alto Natural Gas offset fees			
Additional Measures							
Financing: Rebates. PACE. on-bill financing, etc. New technology - in-pipe hydro. Pressure Relieving Valve (PRV)/Turbine technology, e.g. Portland - Lucid project Permitting improvements	Audit programs - NYC Retrofit Accelerator, Green @ Home, Green House Calls, PG&E audits Incentives, e.g., Energy Upgrade CA Permitting, e.g., fees waived and/or expedited, e.g. Encinitas Building Electrification / Natural Gas Replacement, Boulder	District Approaches (e.g., 2030 Districts, Fort ZED, Cambridge) RFP & Lease Language Existing Building Retrofits Energiesprong, ZNE overhauls with modular components	City Charging Stations (for city fleets and public use) Incentives (preferred parking, free charging or low/no cost charging) Streamlined Permitting City EV "First" purchasing policy. Palo Alto	Innovations through CCEs (aggregated solar, EV deployment) Solar Emergency Microgrids Energy Storage			

Making Clean Local Energy Accessible Now

Key PAEC Findings

Economics


- Future financial viability of energy storage
- Bundling energy efficiency
- Model ordinances
- Inconsistent financial tools (on-bill financing)

Policy

- Focus on deep energy retrofits Atherton
- Streamline interconnection
- Streamline permitting

Technical

- Solar siting survey 65 MW WDG, minimum project size 100 kW ac
- EVCI master plan

Solar Emergency Microgrid (SEM)

- Renewable back-up energy supply
- Community resilience
- Economic benefits (DER)

Case 1: Stanford RWC Community Microgrid

Case 2: Hoover Cluster

- Three scenarios
 - Solar+storage
 - Solar+storage, plus EV charging
 - 21% of load for emergency community shelter
- What benefits larger community?

Clean Coalition

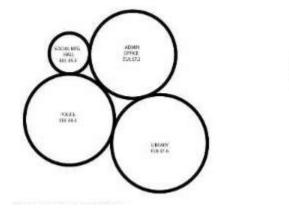
Case 3: Atherton Civic Center

SEM will provide backup power for:

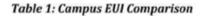
- critical emergency response,
- limited administrative functioning, and
- shelter capacity in library.

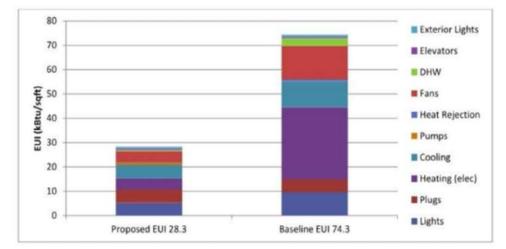
The SEM system can:

- operate indefinitely under good weather conditions, and
- provide sufficient power to critical functions for at least four days under the worst weather condition scenarios.



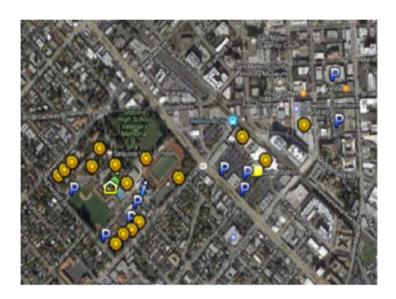
Solar Emergency Micro-grid Case Studies




Case 3: Atherton Civic Center

- First ZNE civic center in the US
- Minimized EUI reduces size of PV system
- Load shifting of energy demand from combined heat pump and water thermal energy storage

Tools to Accelerate AEC Deployment



Economic

- Standard tools known benefits, disincentives, competing priorities
- Non-monetary benefits (qualitative metrics) - minimize fossil fuels, accelerate AECs, reduce GHGs
- Scenario analysis (especially resilience)

Policy

- Streamlined permitting guidelines
- Model ordinances
- Model interconnection process
 checklist
- Green lease language

Technical

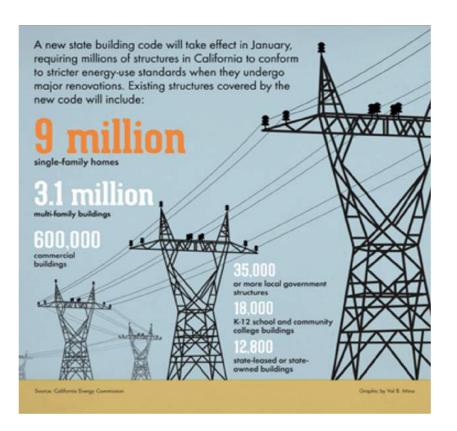
- Solar siting survey
- Building management systems

General benefits for California

- Help meet clean energy policy goals
- Enhance grid resilience and security
- Obviate expense of new power plants
- Help modernize the grid
- Increase % of renewables for RPS
- Improve interconnection policies
- Create green jobs

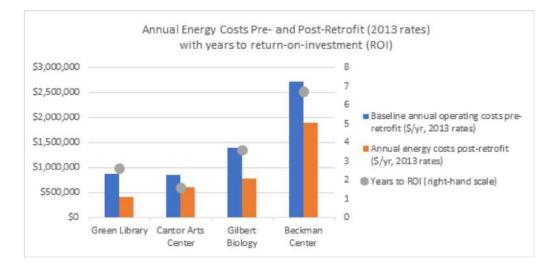
Specific benefits

- Energy consumers
 - Reduce cost of clean local energy
 - Bill payers save money
 - Solar essentially prepays electricity bills for next 25 years



- PAEC community
 - SEMs provide power for critical facilities
 - Accelerated development of local solar generation
 - Economic stimulus
 - Reduce GHGs
 - Avoided loss costs from outages reliability
- Ratepayers
 - Energy consumers will save on peak capacity costs, avoided transmission losses,
 - Energy storage bridges the gap (duck curve)

Conclusion: Areas for Future Study


Clean Coalition

- Need additional financing tools and incentives to implement AEC components
- Train more planning and building inspection staff to incorporate AEC component requirements into permitting and inspection checklists
- Accelerate reach codes and deep energy retrofits
- Additional revenue streams for energy storage
- New rates and tariffs for virtual microgrids
- Integrated technology solution providers

Appendix: Mini-Case Studies

- Stanford University: district energy, retrofits
- Jewish Community Center: proven technology
- Kaiser Permanente Hospitals: full-cost accounting, PPA procurement of PV
- Palo Alto parking garage PV + EVCI: Feed-In-Tariff
- Redwood City Corporate Yard: community microgrid (public benefit) with 3rd party ownership
- Facebook: LEED, PV, EVCI, water-energy, data centers

Infographic (page 1)

Clean Coalition

PENINSULA ADVANCED ENERGY COMMUNITY

PLANNED ATHERTON CIVIC CENTER

ADVANCED ENERGY

COMMUNITY

COMPONENTS

- ENERGY EFFICIENCY
 RENEWABLE
- ENERGY
- ZERO NET ENERGY
 ELECTRIC VEHICLE CHARGING
- INFRASTRUCTURE 5. ENERGY STORAGE

PAEC REPORT HIGHLIGHTS

RECOMMENDATIONS

CHALLENGES

- INCONSISTENT PERMITTING PROCESSES (DOCUMENTATION REQUIREMENTS, COSTS, REVIEWS, TIMELINES) AT MUNICIPALITIES AND UTILITIES
- INCONSISTENT FINANCIAL INSTRUMENTS AVAILABLE TO FUND INVESTMENTS FOR AECS IN COMMERCIAL, RESIDENTIAL, AND PUBLIC SECTORS
- SPLIT INCENTIVES BETWEEN BUILDING OWNERS + TENANTS
- TENSION BETWEEN CAPITAL EXPENSES + OPERATING EXPENSES
- TENDENCY TO FAVOR INITIAL COST OVER LIFE
- CYCLE COSTS
- RANGE ANXIETY LACK OF EV FAST CHARGERS

 IMPLEMENT BUNDLES OF ENERGY EFFICIENCY MEASURES. AVERAGE 5-YEAR PAYBACK = 18% RETURN, BETTER THAN RETURNS FROM MOST OTHER INVESTMENT OPTIONS.

- FOCUS ON THE FOLLOWING IN SOUTHERN SAN MATEO COUNTY:
 - DEEP ENERGY RETROFITS FOR RESIDENTIAL + COMMERCIAL PROPERTIES
 - FINANCIAL OPTIONS THAT ALLOW ENERGY SAVINGS TO FUND CAPITAL INVESTMENTS
- ZERO NET ENERGY FOR NEW DEVELOPMENTS
- INCREASING EV CHARGING INFRASTRUCTURE WITH BATTERY STORAGE
- MUNICIPALITIES SHOULD DEVELOP EV-READY CODES FOR MULTI-UNIT DWELLINGS
- CONTINUE SUBSIDIZING ENERGY STORAGE IN THE NEAR TERM AS THE MARKET BRINGS THE PRICE DOWN

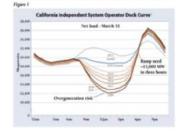
BENEFITS

- REDUCES NEED FOR NEW ENERGY TRANSMISSION + DISTRIBUTION
- 2. PROMOTES GRID RELIABILITY +
- RESILIENCE 3. FINANCIALLY
- ATTRACTIVE
- REPLICABLE + SCALABLE

TOOLS

- STREAMLINED PERMITTING
- MODEL INTERCONNECTION PROCESS CHECKLIST
- MODEL
 ORDINANCES
- GREEN LEASE LANGUAGE
- SOLAR SITING SURVEY
- ELECTRIC VEHICLE CHARGING INFRASTRUCTURE MASTER PLAN

Infographic (page 2)


- **CUSTOMERS** IMPLEMENTING ENERGY
- **EFFICIENCY MEANS:** CUSTOMERS SAVE ON THEIR ENERGY BILL
- IMPROVED COMFORT, HEALTH + WORKER PRODUCTIVITY
- INSTALLING SOLAR PV ALLOWS CUSTOMERS TO PREPAY THEIR ELECTRICITY BILL FOR THE NEXT 25 YEARS, A HEDGE AGAINST FUTURE PRICE INCREASES

BENEFITS OF AEC PROJECTS

- COMMUNITY
- PROVIDES CLEAN LOCAL ENERGY ٠ .
- CREATES CLEAN ENERGY JOBS
- . OBVIATES EXPENSE OF NEW POWER PLANT CONSTRUCTION
- BUILDS RESILIENCE ٠
- ADDRESSES CLIMATE CHANGE ٠

RATEPAYERS

 ENERGY STORAGE BRIDGES THE GAP BETWEEN OVERGENERATION BY SOLAR PV DURING PEAK SUNLIGHT HOURS AND PEAK ENERGY DEMAND LATER IN THE EVENING

AEC LEADERS

EXISTING PROJECTS WITH AEC COMPONENTS

	f	O S H MA N F A M I L Y J L W I S H COMMUNITY C E N T E R HER COMMUNITY	KAISER PERMANENTE	
	FACEBOOK	JEWISH COMMUNITY	KAISER	REDWOOD
ET	(INCLUDING WATER	CENTER	PERMANENTE	CITY CORP
	TREATMENT IN	(MAXIMIZING EXISTING	(LIFE-CYCLE COST	YARD
	ENERGY FOOTPRINT)	TECHNOLOGIES)	SOLUTION TO SPLIT	(SOLAR
=)	- ON-SITE BLACK	- ENERGY EFFICIENCY	INCENTIVE	EMERGENCY
	WATER	- AIR-SOURCE HEAT	PROBLEM)	MICROGRID)
IG	TREATMENT	PUMP	- ENERGY EFFICIENCY	- SOLAR PV
	- ENERGY	- SOLAR PV	RETROFITS	- EV CHARGING
	EFFICIENCY	- EV CHARGING	- SOLAR PV POWER	- ENERGY
	- SOLAR PV		PURCHASE	STORAGE
	- EV CHARGING		AGREEMENT	
	- ENERGY STORAGE		- EV CHARGING	

UNIVERSITY (DISTRICT-LEVEL PROJECTS) - ENERGY EFFICIENCY - DISTRICT-SCALE HEAT EXCHANGE

SYSTEM

- SOLAR PV - EV CHARGING

ALTO PALO ALTO BRYANT STREE GARAGE (IMPROVING FEED-IN TARIFF) - SOLAR PV - EV CHARGING

PALO

- ENERGY STORAGE

Thank You! Justine Burt, Founder & CEO, Appraccel

Kristin Kuntz Duriseti, Ph.D.