

Community Microgrids

Optimizing economics, environment, & resilience

Craig Lewis Executive Director Clean Coalition 650-796-2353 mobile craig@clean-coalition.org

Making Clean Local Energy Accessible Now

17 May 2018

To accelerate the transition to renewable energy and a modern grid through technical, policy, and project development expertise

Clean Coalition Vision

The \$6 trillion energy market will transition to Smart Energy

- Fensure that by 2025, at least 25% of all electricity consumption in the United States is from local renewable energy sources
 - ✓ Locally generated electricity does not travel over the transmission grid to get from the location it is generated to where it is consumed

Accelerating & Amplifying Change ROI

Degree of Change

Clean /

Clean Coalition Initiatives Map

Clean

Coalition

Clean Coalition program expertise

Clean Coalition

* Distributed energy resources (DER) = local renewable generation, energy efficiency, energy storage, electric vehicles and charging infrastructure, and demand response technologies.

WDG Unleashes Renewables

Clean Coalition

WDG Unleashed Solar in Germany

Solar Markets: Germany vs California (RPS + CSI + other)

Germany deployed over 10 times more solar than California, mostly on built-environments, in the decade from 2002 despite California having 70% better solar resource

German solar is mostly local (on rooftops)

German Solar Capacity Installed through 2012

Source: Paul Gipe, March 2011

Germany's solar deployments are almost entirely sub-2 MW projects on builtenvironments and interconnected to the distribution grid (not behind-the-meter)

Project Size	Euros/kWh	USD/kWh	California Effective Rate \$/kWh
Under 10 kW	0.1270	0.1359	0.0628
10 kW to 40 kW	0.1236	0.1323	0.0611
40.1 kW to 750 kW	0.1109	0.1187	0.0548
Other projects up to 750 kW*	0.0891	0.0953	0.0440

- Conversion rate for Euros to Dollars is €1:\$1.07
- California's effective rate is reduced 40% due to tax incentives and then an additional 33% due to the superior solar resource

Replicating German scale and efficiencies would yield rooftop solar today at only between 4 and 6 cents/kWh to California ratepayers

* For projects that are not sited on residential structures or sound barriers.

Community Microgrid Vision

Clean Coalition

Community Microgrids = the Grid of the Future

A Community Microgrid is a new approach for designing and operating the electric grid, stacked with local renewables and staged for resilience.

Key features:

- A targeted and coordinated local grid area served by one or more distribution substations
- High penetrations of local renewables and other Distributed Energy Resources (DER) such as energy storage and demand response
- <u>Staged capability</u> for ongoing renewables-driven power backup for critical and prioritized loads across the grid area
- A solution that can be readily extended throughout a utility service territory – and replicated into any utility service territory around the world

Community Microgrid key stakeholders

Community Microgrids in Six Steps

Clean Coalition

1. Goals

Desired goals & performance metrics of the target grid area based on local resources and known or anticipated grid issues.

Includes renewables penetration goals, grid reliability & power quality performance targets, and power backup requirements.

2. Baseline Analysis

Inventory of the existing grid assets including load profiles, voltage regulation, feeder and transformer capacities, and existing generation.

Includes identifying prioritized services that require backup power during outages.

3. Siting Survey

Comprehensive survey of the renewable energy potential in the target grid area specific to local resources & site characteristics

Informs other requirements such as energy storage capacity needs and control system functionality.

4. DER Optimization

Design of optimal DER portfolios combining renewables, energy storage, and demand response.

Incorporates Baseline Grid Analysis and Renewables Survey to achieve optimal outcomes based on local resources and grid assets.

5. Benefits Analysis

Full analysis of cost- benefits and net value including reductions in T&D investments, ratepayer impacts, and local job creation.

Includes bulk procurement & interconnection that achieve a "plug-and-play" model, further reducing costs.

6.Deployment

Final system design, financial model and operational plan for the Community Microgrid.

Includes vendor analysis (e.g. RFIs, RFPs) appropriate to the final design criteria, financial model, and operational requirements.

Solar Siting Survey (SSS) for Montecito

Lower Village Community Microgrid map view

Clean Coalition

Hot Springs Feeder is a key to success

Lower Village Community Microgrid block diagram

Diagram Elements

Autonomously Controllable Microgrid Relay/Switch (open, closed)

Upper Village Community Microgrid potential

Upper Village Community Microgrid block diagram

Upper Village northern portion

Clean Coalition

Montecito Community Microgrids use of funds

- 1. \$300k \$600k to take each comprehensive Community Microgrid from an idea to being ready for deployment
 - 30% Project Staging.
 - 45% Project Planning & Engineering.
 - 25% Deployment Preparation.
- 2. \$7.5 million to deploy Upper Village Community Microgrid
 - \$2 million for 500 kWac of solar at \$4k/kWac (mostly smallish solar carports and rooftop arrays).
 - \$2 million for 500 kW / 500 kWh of energy storage at \$1k/kWh.
 - \$2 million for grid upgrades like the addition of grid isolation switches etc.
 - \$1.5 million for Monitoring, Communications, and Control (MC²).
- 3. \$22.5 million to deploy Lower Village Community Microgrid
 - Economies of scale from more than 5 times the levels of solar and energy storage; and larger individual project sizes.
 - Leverage grid upgrade and MC² learning from Upper Village efforts.

- 1. \$300k \$600k to take a Community Microgrid from an idea to being ready for deployment
 - Philanthropic funding.
- 2. \$7.5 million to deploy Upper Village Community Microgrid
 - About half pays for itself (most of the solar and about half the energy storage and MC²).
 - Other half (about \$3.75 million) needs to be paid by grants and philanthropic funding; and possibly via SCE ratebasing.
- 3. \$22.5 million to deploy Lower Village Community Microgrid
 - Will require about 25% to be paid by grants and philanthropic funding; and possibly via SCE ratebasing.

Clean

Coalition

UCSB Community Microgrid – Area Map

Clean Coalition

UCSB Community Microgrid – Phase 1

Clean Coalition

UCSB Community Microgrid – Phase 1 + 2

Clean Coalition

Redwood City Community Microgrid Conceptual Diagram

Redwood City Disadvantaged Community and Community Microgrid Sites

Redwood City Disadvantaged Community and Community Microgrid Sites

	Meters or		NEM Solar	FIT Solar	Total Solar [kW	,	Batterv	EVCI
Site Name	Buildings	Critical Loads	[kW AC]	[kW AC]	AC	Battery [kW]	[kWh]	(Level 2)
Stanford Redwood City Phase 1	P1, B1-B4	Campus emergency response	886	0	886	251	2,100	52
Hoover Cluster	Hoover School	Shelter & food service	73	203	276	29	150	20
	Boys & Girls Club	Shelter & food service	11	90	101	0	0	10
	Hoover Park	Equipment staging	0	0	0	0	0	0
Redwood City Corporate Yard	Redwood City Corporate Yard	Road and public facility maintenance and repair	136	352	488	58	360	*4
San Mateo County S Corporate Yard (SMC Yard)	SMC Yard Meter 1	Road and public facility maintenance and repair	65	0	65	58	240	0
	SMC Yard Meter 2		33	121	154	0	0	*4
	SMC Yard Meter 3		0	79	79	0	0	0
Sobrato Broadway Plaza	Sobrato Broadway Plaza (multiple meters)	Low income housing	0	1,197	1,197	TBD	TBD	TBD
	Sobrato CVS	Pharmacy & grocery	Û	83	83	TBD	TBD	TBD
New Deployments '	New Deployments TOTAL		1,204	2,125	3,329	396	2,850	82

With net metering, only 1.2 MW can be deployed.

With a new FIT program, an **additional 2.1 MW** of local, renewable generation could be deployed in a disadvantaged community.

Stanford RWC Phase 1 and 2

Clean Coalition

Stanford RWC Phase 1 Overview Map

Clean Coalition

Stanford RWC Phase 1 feeders & switching

Clean Coalition snore Rd Stanford RWC Configuration: 5 buildings & 1 parking garage ALC: N 5 meters total 886 kW new solar 251 kW/ 2.1 MWh new battery 52 new L2 EV charging ports Parking structure * 101 X.51 B4 ES 100Ve B3 ES LOO RAV Broadway Page St Site Plan Icon Legend M Meter Main ٢ Proposed Solar PV E V L2 EV charging © 2018 Google Substation

Hoover Cluster Conceptual Diagram

Clean Coalition

Hoover Cluster Detailed Map

Clean Coalition

Sobrato Broadway Plaza and CVS overview map

Clean Coalition

Peek at the Community Microgrid future

Clean Coalition

Ecoplexus project at the Valencia Gardens Apartments in SF. ~800 kW meeting ~80% of the total annual load.

Backup

Community Microgrids obviate gas peakers

- Thanks in part to our analysis, California regulators have rejected Ellwood and signaled their intent to reject Puente as well
- "Let's take this opportunity to move the Oxnard community into the clean energy future — which is here already." Carmen Ramirez, Mayor of Oxnard
- Significant opportunity to leverage this work to prevent future new gas plant proposals across the country

Clean

Coalition

Community Microgrids cheaper than gas peakers

 Leveraging our technical and economic expertise, the Clean Coalition conducted an analysis to determine the viability of solar+storage as a better alternative

Clean

Coalition