Clean Coalition Making Clean Local Energy Accessible Now

Dr. Frank Wasko Programs Director Clean Coalition 949-501-0967 mobile frank@clean-coalition.org

Community Microgrids Savings and Resilience for Local Governments

Making Clean Local Energy Accessible Now

25 January 2018

Introduction: Energy is Critical Infrastructure

Clean Coalition

Energy is Critical Infrastructure.

And yet, our legacy, centralized energy architecture carries multiple <u>Critical Risks</u>.

- This architecture is costly, aging, inefficient, and a highly vulnerable security risk
- Cyber attacks are a growing risk, and an attack on a centralized system can affect millions
- Extreme weather events are occurring more frequently, further demonstrating the vulnerability and high cost
- To accomplish both local and national security, we must move more quickly to a new solution

Community Microgrids: Cleaner, More Reliable, More Affordable

Traditional Microgrids focus on single customers

Source: Oncor Electric Delivery Company

Community Microgrids serve thousands of customers

Source: Oncor Electric Delivery Company

Why Community Microgrids?

A Community Microgrid delivers four combined benefits to communities.

These benefits are not provided by today's centralized energy system.

- 1. Lower Costs: By optimizing local clean energy systems including energy storage and other DER, the cost of sending electricity over long distances during expensive peak times is reduced.
- 2. Cleaner Energy: Via high penetrations of local clean energy that replaces fossil fuel, while also increasing local clean transportation and at lower costs.
- Resilience & Security: By delivering ongoing, clean power to critical & priority loads across communities – and able to withstand multiple disaster scenarios.
- 4. A Replicable Community Solution: Covering an entire substation area, this solution can be deployed in any community around the world and also increases local economic investment.

Community Microgrid design steps

Step 1: Goals and Motivations

- Public Safety
- Disaster Recovery and Resilience
- Meet municipal climate and emissions goals
- Local economic development
- Cost savings for constituents along with environmental and health benefits

Clean Coalition

Community Microgrid design steps

- Step 2: Baseline Grid Analysis
- Step 3: Local Clean Energy Survey
- **Step 4: Distributed Energy Resource Optimization**
 - **Critical Loads**
 - DER System Sizing

Clean∲

Coalition

Community Microgrid design steps

Step 5: Benefits Analysis

• Hunters Point Example 50 MW PV over 20 years

Energy

Cost Parity: Solar vs. NG, LCOE **\$260M:** Spent locally vs. remote **\$80M:** Avoided transmission costs **\$30M:** Avoided power interruptions

<u>Economic</u>

\$200M: New regional impact
\$100M: Added local wages
1,700 Job-Years: New nearterm and ongoing employment
\$10M: Site leasing income

Environmental

78M lbs.: Annual reductions in GHG emissions
15M Gallons: Annual water savings
375: Acres of land preserved

Example: 50 avg. rooftops
Avg. PV Sq. Ft = 343
Avg. system size = 5 kW

Making Clean Local Energy Accessible Now

- Critical public infrastructure
 - Emergency Shelters (schools, community centers, gyms)
 - Police stations and fire station
 - Public works and corporation yards
- Critical private infrastructure
 - Hospitals and clinics
 - Emergency shelters
 - Vniversities
 - Corporate campuses
 - Gas stations

Clean Coalition

- Explore Community Microgrid options for critical public infrastructure
 - Evaluate community needs and identify critical facilities
 - Engage engineering consultancy to propose system designs
 - Consider project financing and construction timelines
- Streamline permitting processes for renewable energy and energy efficiency projects in your jurisdiction
- Consider public-private partnerships to enable true community resilience

Expertise working with utilities + cities

Clean Coalition

Full cost and value accounting for DER; siting analysis

- PG&E
- PSE&G
- SCE

Powerflow modeling; DER optimization

- PG&E
- PSE&G
- SCE

Procurement and interconnection

- LADWP, Fort Collins, PSE&G
- City of Palo Alto FIT
- RAM, ReMAT
- Rule 21 & FERC

Design and deployment

- VC Santa Barbara
- Stanford Redwood
 City
- Simsbury, CT
- San Francisco, CA
- Long Island, NY
- U.S. Virgin Islands

And Finally...

The Thomas Fire in Southern California has burned 281,893 acres in Ventura and Santa Barbara counties, making it the largest officially recorded wildfire in modern California history

- The fires destroyed more than 1,000 structures, including 775 houses. There is now a **nine-plaintiff suit** accusing Ventura and Casitas of damaging or destroying the plaintiffs' properties because of the alleged lack of water pressure to fire hydrants.
- The suit states that the water-pumping stations owned and operated by the city lost electrical power and the city didn't have properly working backup generators on hand.
- It also alleges pumping stations owned and operated by Casitas, which provides water to fire hydrants in Ojai, also lost power and that backup generators did not work.

Is this the Community Energy We Want?

Source: https://www.noozhawk.com/article/3 lawsuits blame southern california edison for thomas fire