

Welcome to

municipal sustainability & energy forum

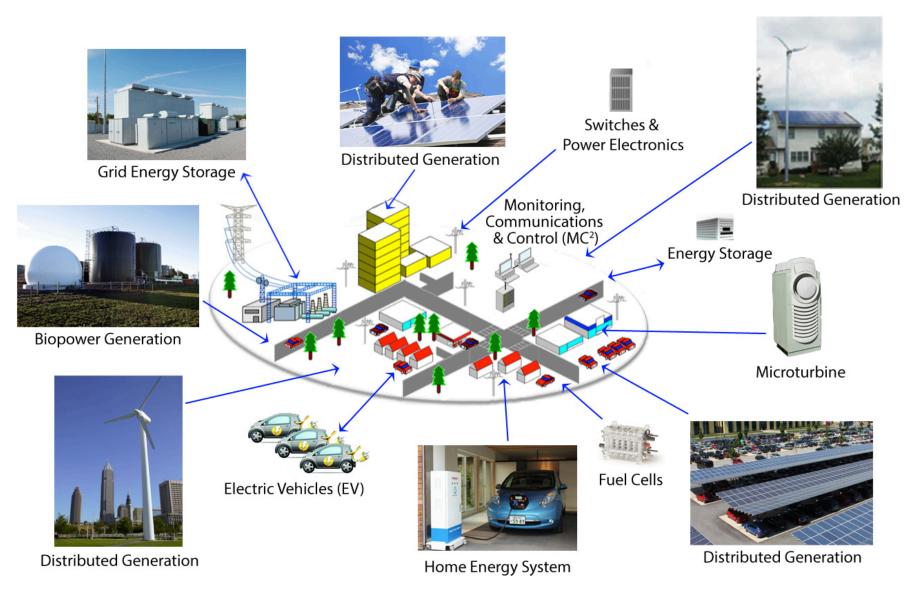
hosted by Sierra Dall

Clean Coalition

Distribution Resources Planning

A foundational policy for modernizing the grid

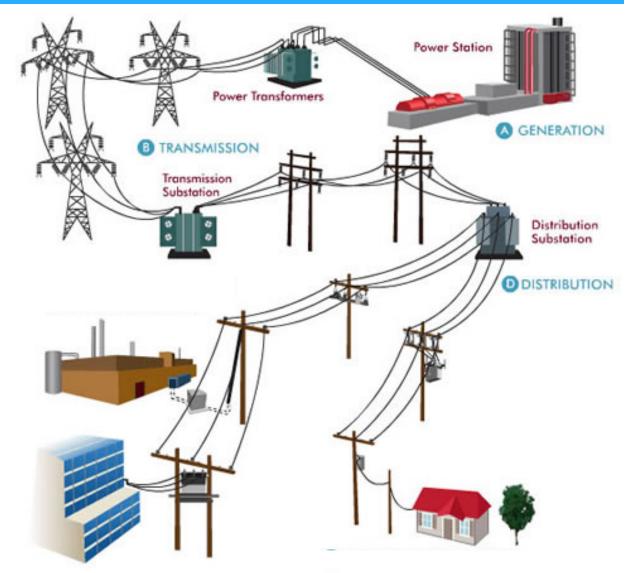
John Bernhardt Outreach & Communications Director (703) 963-8750 mobile john@clean-coalition.org


Agenda

- The need for Distribution Resources Planning (DRP)
- An overview of DRP
- The benefits of DRP
- California: a case study
- Pathways to initiate DRP in your state

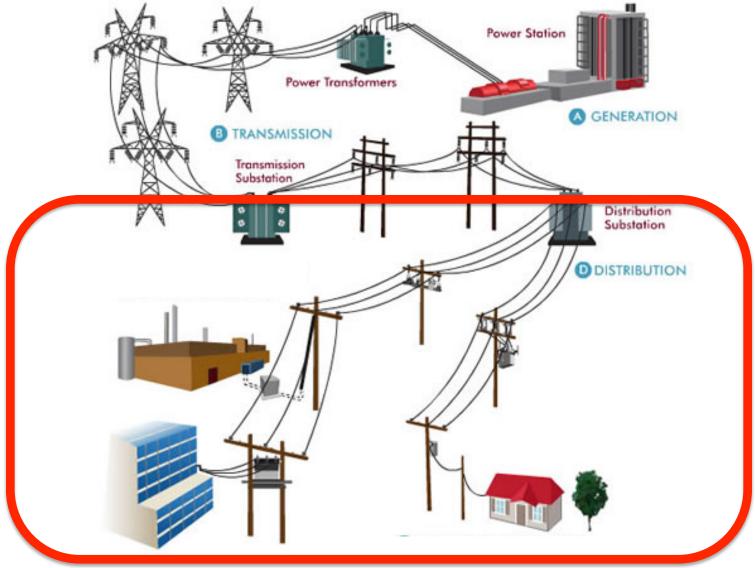
Our vision

Clean Coalition


Agenda

- The need for Distribution Resources Planning (DRP)
- An overview of DRP
- The benefits of DRP
- California: a case study
- Pathways to initiate DRP in your state

Anatomy of the power grid


Clean Coalition

Source: Oncor Electric Delivery Company

Distribution grids are centers of innovation

Source: Oncor Electric Delivery Company

DER technologies have become cost-effective

BRIEF

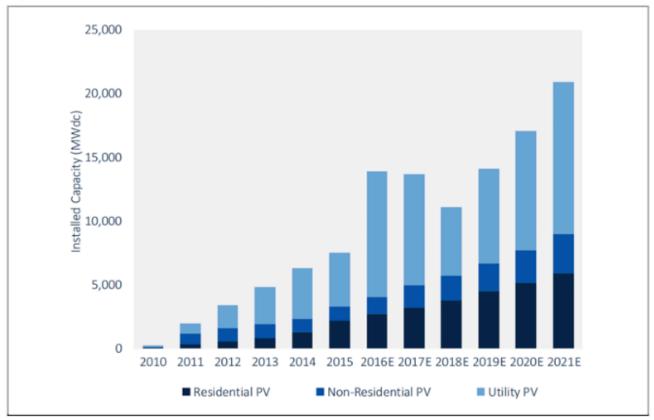
Minnesota solar project beats natural gas on price, gets authorization

Source: Utility Dive

DER technologies have become cost-effective

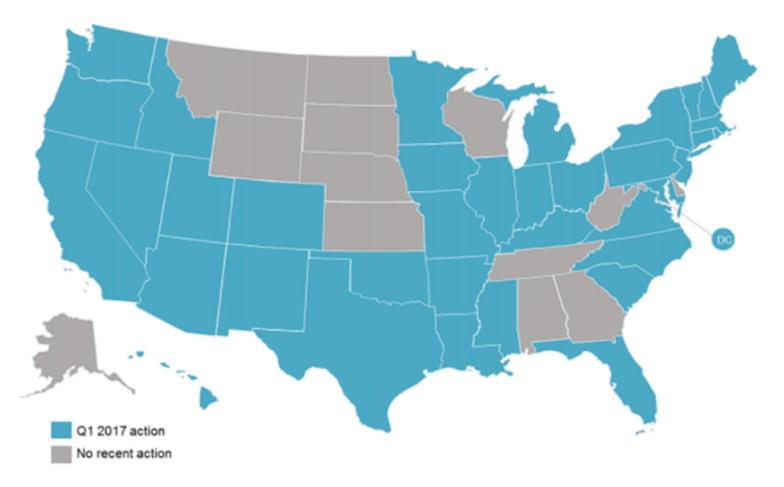
BRIEF

Hawaii co-op signs deal for solar+storage project at 11¢/kWh


U.S. residential electricity prices averaged 12.5 cents/kWh in Oct. 2016

Source: Utility Dive and U.S EIA

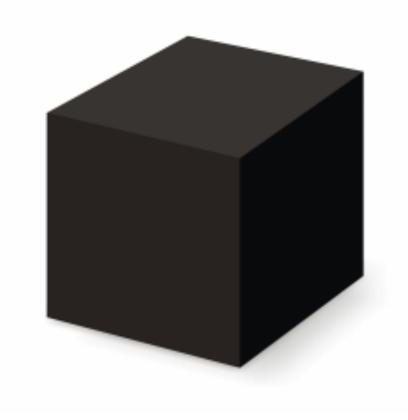
Continued growth of DER is projected


Industry experts predict continued growth of solar and distributed solar generation capacity to grow significantly in the coming years.

Source: GTM Research and SEIA

Energy policy is evolving

Figure 1. Legislative and Regulatory Action on Grid Modernization (Q1 2017)


Source: NC Clean Energy Technology Center

- New 'value-add' services
 - Energy efficiency, demand response, enhanced reliability/power quality
- New asset ownership and capital investment opportunities
 - Vtility-owned DER
 - Rate-basing: "utility pays" for smart distribution grid upgrades
- Evolving utility business models
 - Utility as an integrator distribution system operator, distribution system platform provider, etc.

Insufficient insight is a problem

Enhanced visibility and knowledge is key

Agenda

- The need for Distribution Resources Planning (DRP)
- An overview of DRP
- The benefits of DRP
- California: a case study
- Pathways to initiate DRP in your state

DRP supports the following goals

Clean Coalition

Source: Pacific Gas & Electric

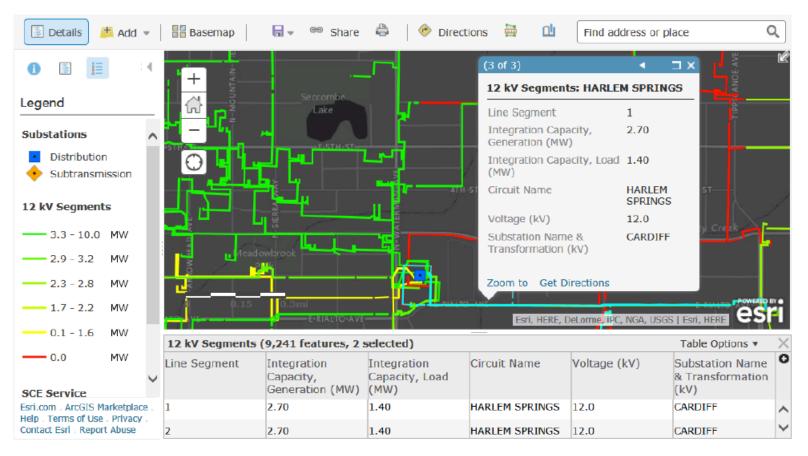
Integration capacity analysis (ICA)

Vtilities determine the ability of existing grid to accommodate new DER within the distribution network. Grid maps, with details on available capacity down to the circuit level, will be made publicly available.

Methodology to value DER

 Utilities will propose, and regulators will approve, a methodology to value DER, which recognizes locational value.

Substation-level demonstration projects


 Pilot projects utilize DER to achieve ratepayer savings when compared to conventional approaches like centralized generation and transmission investments.

DER forecasts

 Project DER growth for the next ten years, with details on expected siting at the distribution substation level and potential impacts on distribution and transmission planning.

Integration capacity analysis (ICA)

- Aggregated, anonymous distribution data accessible online
 - Highlight grid locations best suited for new local generation, like solar
 - Identify grid constraints and opportunities for cost-effective DER

Source: Southern California Edison

Making Clean Local Energy Accessible Now

Clean∳

Coalition

Methodology to value DER

	Value Component	Definition
Distribution	Subtransmission, Substation & Feeder Capacity	Reduced need for local distribution system upgrades
	Distribution Losses	Value of energy due to losses between wholesale transaction and distribution points of delivery
	Distribution Power Quality + Reactive Power	Improved transient & steady-state voltage, reactive power optimization and harmonics
	Distribution Reliability + Resiliency+ Security	Reduced frequency and duration of individual outages & withstand and quickly recover from large external natural, physical and cyber threats
	Distribution Safety	Improved public safety and reduced potential for property damage
Customer, Societal & Environmental	Customer Choice	Customer & societal value from robust market for customer alternatives
	CO2 Emissions	Reductions in federal and/or state CO2 emissions based on cap-and-trade allowance revenue or cost savings or compliance costs
	Criteria Pollutants	Reduction in local emissions in specific census tracts
	Health Impacts	Reduction in societal health costs associated with GHG emissions
	Energy Security	Reduced risks derived from greater supply diversity
	Water Use	Synergies between DER and water management (electric-water nexus)
	Land Use	Environmental benefits & avoided property value decreases from DER deployment instead of large generation projects
	Economic Impact	State or local net economic impact (e.g., jobs, GDP, tax income)

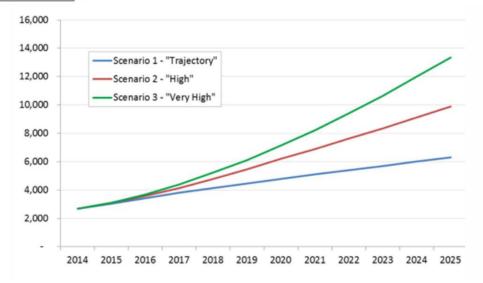
Source: Newport Consulting Group

DRP pilot projects

- Prove the technical and economic feasibility of DER
- Capitalize on opportunities in which DER can save ratepayers money in comparison to traditional grid investments

Con Ed Looks to Batteries, Microgrids and Efficiency to Delay \$1B Substation Build

A new demand-side program will be a training ground for future utility reforms in New York.


by Katherine Tweed July 17, 2014

DER forecasts

Establish method to project DER growth and potential impacts on the grid

SCE Territory Amounts of DER Deployment by 2025

Growth Type	Scenario 1	Scenario 2	Scenario 3
Base Load	27,019 MW	27,019 MW	27,019 MW
Solar PV (nameplate AC)	1,636 MW	1,905 MW	4,770 MW
AAEE (annual)	10,536 GWh	17,031 GWh	17,243 GWh
Demand Response	1,265 MW	2,087 MW	2,981 MW
CHP (annual)	6,350 GWh	8,576 GWh	13,612 GWh
EV (annual)	2,422 GWh	3,395 GWh	3,395 GWh
Storage (D&C)	270 MW	270 MW	637 MW
Storage (T)	310 MW	310 MW	731 MW

Sources: SCE and PG&E

Making Clean Local Energy Accessible Now

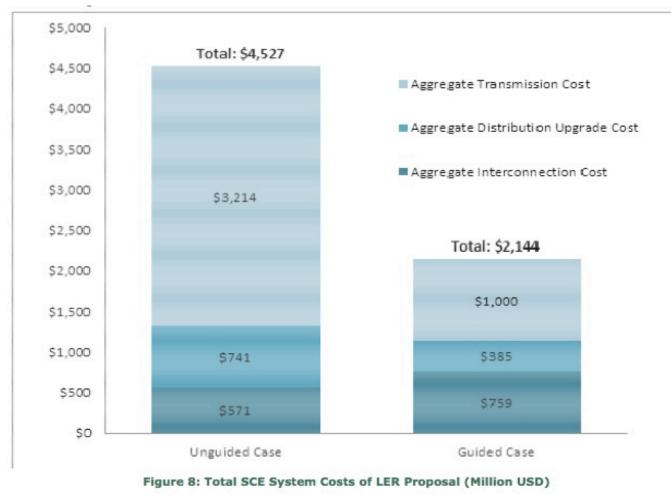
Clean

Coalition

Agenda

- The need for Distribution Resources Planning (DRP)
- An overview of DRP
- The benefits of DRP
- California: a case study
- Pathways to initiate DRP in your state

Benefits of implementing DRP



- Streamline the interconnection process for DER
 - Utilize online grid maps to guide siting of DER, like solar, to optimal locations on the grid – reducing costs of developing clean local energy projects
 - Save utilities time and money by improving interconnection review processes

Guiding DER siting saves ratepayers >50%

SCE Share of California's 12 GW Distributed Generation Goal

- Locational value methodology should include transmission costs
- DRP should inform interconnection and compensation policies to guide DER deployment to optimal locations

Source: SCE Report May 2012

Benefits of implementing DRP

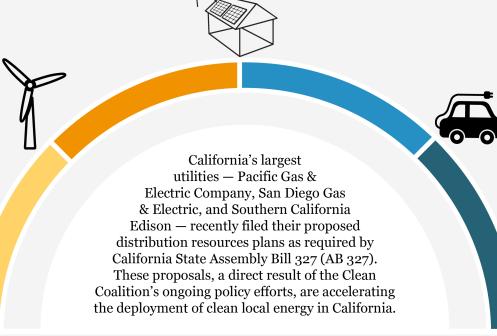
- Guide smart investments into the distribution grid.
 - Improve system planning processes by looking more holistically to identify the best solution

Instead of looking strictly at wires solutions, we started looking at DERs as non-wires solutions and at what the most cost-effective way of using them is to meet our reliability, safety, and affordability standards.

- Mark Esguerra, Principal Engineer and DRP filing lead at Pacific Gas and Electric

Clean Coalition

Integrated Distribution Planning Framework


Agenda

- The need for Distribution Resources Planning (DRP)
- An overview of DRP
- The benefits of DRP
- California: a case study
- Pathways to initiate DRP in your state

Initiating CA's DRP took time

Clean Coalition

Centralized

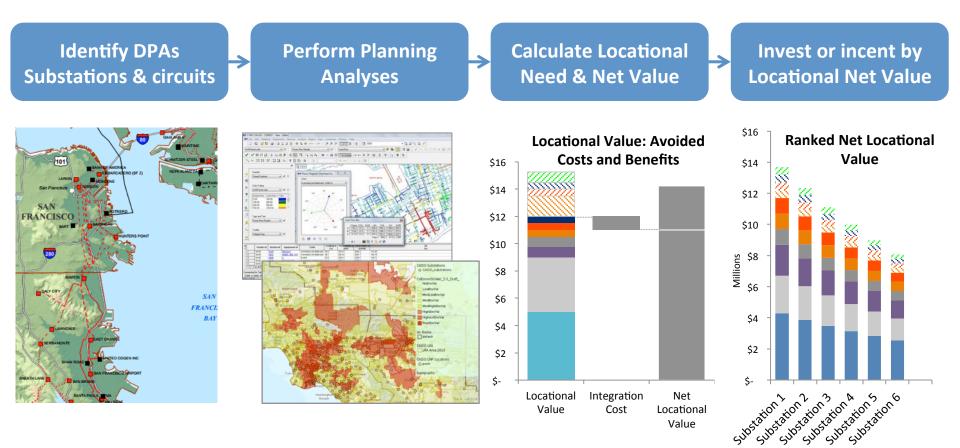
2009-2010

The Clean Coalition is founded and begins advocating for local renewables, in front of the California Public Utilities Commission (CPUC) and the Federal Energy Regulatory Commission, as an alternative to centralized, fossil fuel generation.

2011-2012

The California Energy Commission includes many Clean Coalition recommendations in their Integrated Energy Policy Report. The Clean Coalition introduces multiple bills in California mandating proactive distribution grid planning.

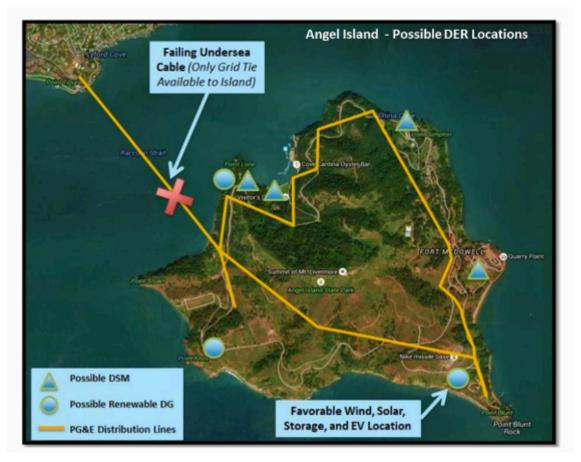
2013-2014


AB 327 becomes law in California requiring the largest utilities to proactively plan for the rise of distributed renewable energy. The CPUC adopts numerous Clean Coalition recommendations as they implement the law, including the Community Microgrid Initiative methodology.

Distributed

2015

On July 1, utilities submitted their distribution resources plans, signaling a major step forward in establishing a cleaner, more reliable, and more efficient grid, while setting a model for the rest of the United States.



DRP pilot projects

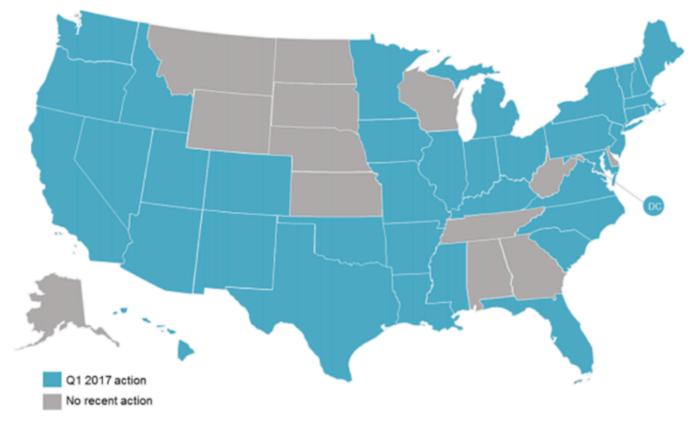
- Prove out the technical and economic feasibility of DER
- Pilot projects identified by the methodologies developed for the integration capacity and optimal location benefit analyses

Source: Pacific Gas & Electric

Agenda

- The need for Distribution Resources Planning (DRP)
- An overview of DRP
- The benefits of DRP
- California: a case study
- Pathways to initiate DRP in your state

3 pathways to initiative a DRP process


Clean Coalition

- 1) Legislative process
- 2) Regulatory process
- 3) Voluntary utility adoption

3 pathways to initiative a DRP process

 There may be opportunities to bring DRP into existing policy activity underway in your state

Figure 1. Legislative and Regulatory Action on Grid Modernization (Q1 2017)

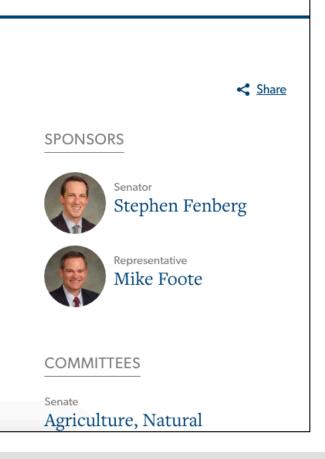
Source: NC Clean Energy Technology Center

Clean

Coalition

The Clean Coalition can help

Facilitated the introduction of Senate Bill 145 in Colorado in Spring 2017


First Regular Session | 71st General Assembly Colorado General Assembly

SB17-145 Electric Utility Distribution Grid Resource Acquisition Plan

Concerning modifications to the electric utility resource acquisition process, and, in connection therewith, promoting a more resilient, reliable, and cost-effective electrical grid through enhanced planning and data transparency.

SESSION: 2017 Regular Session

The bill directs specified electric utilities to prepare, and the Colorado public utilities commission to review, proposals to integrate distributed energy resources into their plans to acquire new infrastructure. 'Distributed energy resources' is defined to include renewable distributed generation facilities, such as rooftop solar, energy storage facilities, electric vehicles, and other features of an improved and diversified electrical grid architecture. The

Clean

Coalition

The end result


Making a quicker, cheaper, and easier to build local renewables

Source: EcoPlexus

- *" "By failing to prepare, you are preparing to fail." –* Ben Franklin
- Modernizing the grid in a smart, cost-effective manner requires Distribution Resources Planning (DRP)
- For questions and assistance, contact: John Bernhardt
 Outreach & Communications Director john@clean-coalition.org
 (m) 703-963-8750

municipal sustainability & energy forum

presenter John Bernhardt Clean Coalition 703.963.8750 john@clean-coalition.org

next webinar www://mseforum.com EVENTS 303.554.1833

contact Sierra sierradall@mseforum.com

