

Economics of Energy Efficiency and Fuel Switching for Commercial-Scale Buildings

Wednesday, January 31, 2018

GoToWebinar FAQ

- Webinar recording and slides will be emailed and online within two business days, along with full reports on commercial-scale buildings
- All webinars are archived on www.clean-coalition.org and the Clean Coalition's YouTube channel
- Submit questions in the Questions window at any time (window view varies by operating system and browser)
- Questions will be answered during the panel portion of the webinar
- Use the hashtag #PAECchat to join the conversation on Twitter

Presenters

- Betty Seto, Head of Department,
 Sustainable Buildings &
 Communities, DNV GL leads a team of
 sustainability consultants with a passion
 for clean energy and demand-side
 solutions at the building, district, and
 citywide scales with technical
 competencies across energy modeling,
 passive strategies, natural ventilation,
 daylighting analysis, solar, storage, and
 microgrid feasibility analysis.
- Blake Herrschaft, Senior Engineer, Sustainable Buildings & Communities, DNV GL is a professional engineer (PE) who provides passive and innovative design assistance for net zero and net zero capable buildings, portfolios, and communities.

The **Clean Coalition's Peninsula Advanced Energy Community (PAEC),** supported by Pacific Gas & Electric and numerous local governments, will accelerate the planning, approval, and deployment of an Advanced Energy Community (AEC).

LEGAL NOTICE

This document was prepared as a result of work sponsored by the California Energy Commission. It does not necessarily represent the views of the Energy Commission, its employees, or the State of California. Neither the Commission, the State of California, nor the Commission's employees, contractors, or subcontractors makes any warranty, express or implied, or assumes any legal liability for the information in this document; nor does any party represent that the use of this information will not infringe upon privately owned rights. This document has not been approved or disapproved by the Commission, nor has the Commission passed upon the accuracy of the information in this document.

Project Funding

PAEC is made possible from a grant through the <u>CEC's Electric Program</u> Investment Charge (EPIC) program, which offered "The EPIC Challenge: Accelerating the Deployment of Advanced Energy Communities."

PAEC region: southern San Mateo County (highlighted)

Key Components of an Advanced Energy Community Coalition

Clean

6

Why reduce use of natural gas?

San Mateo County: 2014 Greenhouse Gas Emissions (MT CO2e)

8

Role of Buildings in Achieving the Advanced Energy Community Vision

Economic Benefit-Cost Analysis of Energy Efficiency and Fuel Switching Measures for Commercial Buildings

Energy Use Breakdown – San Mateo County (CEC Climate Zone 3)

Electrification & Zero Carbon Heating Concepts

Some considerations:

In high renewable penetration, natural gas is biggest building-related emitter

25% of US homes are all-electric

Norway has been all-electric, all-renewable for years

Clean Coalition

Electrification – The Hazards of Natural Gas

Annual Natural Gas Consumption, United States (mmcf)

US Natural Gas Use Residential Commercial Industrial Power Plants 4,914,327 3,278,856 7,413,918 8,153,285 Vehicles

Annual Natural Gas Consumption, United States (mmcf)

DNV.GL

Utilities Start to Recommend Electrification

Figure 1: Meeting California's GHG Reduction Goals (Source: California Air Resources Board [CARB])

16

Zero Carbon Heating Concepts, Technologies, and Benefits

Heating, Ventilation, and Air Conditioning

(HVAC) system is one of the major end use consumptions. A variable refrigerant flow (VRF) system with heat recovery is typically a three pipe system that have the ability to simultaneously heating certain zones and while cooling others, yielding the efficiency up to 14 EER.

Variable Refrigerant Flow System Diagram

Typical **domestic hot water systems** include electric water heater or natural gas water heater, including an expansion tank, which incur standby loss. Heat Pump Water Heater (HPWH) is an emerging technology that extracts heat from air to heat the water. Due to its high efficiency, it is recommended instead of electric tank-less water heater. Even federal regulation requires heat pump water heater where electric heaters are to be installed in commercial facilities where the rated storage volume are above 55 gallons.

Heat Pump Hot Water Heater

Energy Efficiency and Electrification Analysis

Building type selections

 Identifying appropriate financial and business models for building owners requires consideration of *building types that should be targeted for zero net energy and deep energy efficiency retrofits*.

Baseline building vintage

 Based on discussions with Clean Coalition, the analysis focused on prototypical buildings constructed around **1995**, as the ideal candidates for retrofits. Based on professional experience, older vintage buildings are likely to be torn-down and rebuilt, rather than new investments in energy efficiency.

Baseline and proposed efficiencies

The model assumption deliverables provides a professional assessment of likely baseline equipment efficiencies and appropriate higher efficiency upgrades for achieving AECs.

The 5 Prototypical Buildings

Office – 10,000 sqft, 2 Stories

Retail – 5,000 sqft, 1 Story

Based on: LoopNet, CBECS, RECS, Menlo Park and Redwood City Fire Departments, and Department of Education/School District websites.

• The economic analysis examines the following parameters for each EEMs:

- Incremental **capital costs** (RS Means & manufacturer data)
- Incentives available
- Incremental operations and maintenance compared with baseline equipment
- A set of "self-funded" and "financed" economic metrics such as payback, internal rate of return and revenues/savings
- Annual energy cost savings (energy model results)

EEM	Description of Measure	Capital Cost Range**
Baseline	Based on a 1995 vintage office building (22 years old)	-
LEDs	LED Lighting and Occupancy Controls	\$7k - \$27k
BMS	Building Management System (BMS)/advanced HVAC controls	\$1k - \$4k
Phantom Loads	Reduction in phantom loads with smart strips training	\$1k - \$2k
Windows	Improved window thermal properties	\$23k - \$70k
Insulation	Improved wall and roof thermal properties	\$5k - \$8k
AC	Replacement of obsolete Air Conditioning systems with higher efficiency	\$1k - \$2k
7-Heating	Convert to heat pump from natural gas space heating	\$1k - \$2k
8-Hot Water*	Upgrade to a solar hot water heater and/or an electric heat pump hot water heater	\$4k - \$15k

* The retail and school prototypical buildings do not have hot water heating in their buildings. The multi-family building is the only one to include solar hot water heaters.

** Capital cost range is dependant upon prototypical building size and type, as well as system selection.

Clean Coalition

Assumptions

EEM	Building Component	Age of Existing Component	Existing Conditions (Title 24 1995)	Proposed Measures		
1-LED	Interior Lights	22 years	1.5 W/ft ² Fluorescent Lights	0.4 W/ft ² (100% LED, occupancy & daylight sensors)		
	Exterior Lights	22 years	Entrance: 33 W/lin. ft Facade: 0.25 W/ ft ²	Entrance: 15 W Facade: 0.18 W/ ft ²		
2-BMS	Building Management System	n/a	-	10% savings to HVAC		
3-Phantom Loads	Phantom Loads	n/a	1.50 W/sf Equipment	1.25 W/sf Equipment (Smart strips & training)		
4-Windows	Windows	22 years	U-Factor = 1.23 (single pane windows)	U-Factor = 0.32 (dual pane, energy efficient)		
5-Insulation	Insulation - Exterior Walls	22 years	U-Factor = 0.43 (mass walls)	U-Factor = 0.10 (add 2" rigid insulation)		
5-Insulation	Insulation - Roof	22 years	U-Factor = 0.05 (R19)	U-Factor = 0.036 (add 2" rigid insulation)		
6-AC	AC Systems	22 years	8.9 EER Packaged Rooftop Unit	3.2 COP Rooftop Heat Pump		
7-Heating	Heating Systems	22 years	78% efficiency Natural Gas Boiler	3.4 COP Rooftop Heat Pump		
8-Hot Water	Hot Water Heater	22 years	80% efficiency Natural Gas Boiler	3 EF Electric Heat Pump		

Calculation Methodology

The Right Tool for Each Job

Energy Simulation – IES Virtual Environment

- Insulation
- Windows
- Air Conditioning
- Heating
- Building Management System

E-have																													
		Ja	nua	ary					February March April																				
1	2	3	4	5	6	7		1	2	3	4	5	6	7	1	2	3	4	5	6	7		1	2	3	4	5	6	7
8	9	10	11	12	13	14		8	9	10	11	12	13	14	8	9	10	11	12	13	14		8	9	10	11	12	13	14
15	16	17	18	19	20	21		15	16	17	18	19	20	21	15	16	17	18	19	20	21		15	16	17	18	19	20	21
22	23	24	25	26	27	28		22	23	24	25	26	27	28	22	23	24	25	26	27	28		22	23	24	25	26	27	28
29	30	31						29	(2016,	2020)					29	30	31						29	30					
			May	/							Jun	e						July	1				August						
1	2	3	4	5	6	7		1	2	3	4	5	6	7	1	2	3	4	5	6	7		1	2	3	4	5	6	7
8	9	10	11	12	13	14		8	9	10	11	12	13	14	8	9	10	11	12	13	14		8	9	10	11	12	13	14
15	16	17	18	19	20	21		15	16	17	18	19	20	21	15	16	17	18	19	20	21		15	16	17	18	19	20	21
22	23	24	25	26	27	28		22	23	24	25	26	27	28	22	23	24	25	26	27	28		22	23	24	25	26	27	28
29	30	31						29	30			-			29 30 31							29 30 31							
		Sep	ten	nbe	r					00	ctob	ber					Nov	/em	ibei	•					Dee	cem	ber		
1	2	3	4	5	6	7		1	2	3	4	5	6	7	1	2	3	4	5	6	7		1	2	3	4	5	6	7
8	9	10	11	12	13	14		8	9	10	11	12	13	14	8	9	10	11	12	13	14		8	9	10	11	12	13	14
15	16	17	18	19	20	21		15	16	17	18	19	20	21	15	16	17	18	19	20	21		15	16	17	18	19	20	21
22	23	24	25	26	27	28		22	23	24	25	26	27	28	22	23	24	25	26	27	28		22	23	24	25	26	27	28
29	30							29	30	31					29	30							29	30	31				-
© w	w.cal	endar	pedia	.com			·								 							·				Data prov	ided 'as i	r without	winant

8,760 "Hand" Calculation

- Interior Lighting
- Exterior Lighting
- Hot Water

Clean Coalition

Office Results

5

Multi-Family Results

most energy of all EEMs

Retail Results

Clean

Coalition

School Results

Clean

Coalition

Municipal Results

Savings Comparison by Building Type

Building	EUI before Upgrades (kBTU/sf-yr)	EUI after upgrades (kBTU/sf-yr)	Average payback (years)
Office	59	22	5.4
Municipal (fire station)	84	39	4.6
Retail	64	21	9.3
Multifamily	64	27	6.9
School	60	26	10.7

Energy efficiency before and after: Five modeled types of buildings

Source: PAEC report, Final Economic Benefit-Cost Analysis of Energy Efficiency and Fuel Switching Measures

Economic Deep Dive (Bundling)

<u>Top Half</u> Fuel Switching BMS Windows

> <u>Whole Tree</u> Whole Building Energy Efficiency

Bottom Half Lights / Pumps/Motors Phantom Loads

Energy Efficiency	Self-funded Economic Metrics											
Measures (EEMs)	Payback	IRR (10 yrs.)	IRR (system life)	LCOE	Revenue/ Savings							
1-LEDs	2.5	38%	40%	\$0.06	\$96,332							
2-BMS	9.2	2%	7%	\$0.12	-\$176							
3-Phantom Loads	0.8	131%	131%	\$0.02	\$28,048							
4-Windows	11.8	-3%	7%	\$0.06	\$108,385							
5-Insulation	3.8	23%	26%	\$0.02	\$69,577							
6-AC	2.9	33%	34%	\$0.03	\$11,877							
7-Heating	0.4	271%	271%	\$0.00	\$106,324							
8- Hot Water	NA	NA	NA	\$0.03	NA							
9-All EEMs	5.4	13%	18%	\$0.05	\$320,640							

Table 7: Economic analysis – economic metrics

Table 6: Economic analysis – EEM analysis

	EEM Analysis												
Energy Efficiency Measures (EEMs)	Capital Cost	Incentives Available	Incremental Operations & Maintenance	Annual Energy Cost Savings (\$/yr)	System Life (years)								
1-LEDs	\$26,760	\$3,853	\$0	\$9,172	13								
2-BMS	\$4,000		\$180	\$435	15								
3-Phantom Loads	\$1,500		\$0	\$1,970	15								
4-Windows	\$70,392		\$0	\$5,959	30								
5-Insulation	\$10,213		\$0	\$2,660	30								
6-AC	\$2,000		\$0	\$694	20								
7-Heating	\$2,000		\$0	\$5,416	20								
8-Hot Water	\$4,000	\$300	\$0	-\$187	20								
9-All EEMs	\$120,865	\$4,153	\$180	\$21,645	20.4								

Summary of Findings – Payback

- The retail and school prototypical buildings do not have hot water heating in their buildings.
- NA These measures have no payback, typically due to fuel switching.

Most cost-effective measures

 The analysis found that the most cost-effective measures were generally addressing *phantom loads* and *LED lighting*, followed by investments in *rooftop heat pumps for air-conditioning*.

Economics of fuel switching

 While strategies related to electric heat pumps for water heating are of interest to cities for reducing natural gas consumption, this measure was not found to be cost-effective at this time. *Due to the low cost of natural gas, the heat pump water heaters result in higher energy costs for water heating.*

How it ties into overall task goal/objectives

 Identifying appropriate financial and business models to make AEC financially attractive will require identifying *how to bring down the upfront costs of electrification*, including ways to better internalize the environmental costs of fossil fuel usage (e.g., carbon tax on natural gas) and also consideration of costs associated with natural gas infrastructure.

DNVGL

- New Equipment that Pays for Itself
- Less Complaints Due to Old Equipment
- Increased Safety from Natural Gas Leaks and Carbon Monoxide Poisoning
- Leasing and Sales Marketability
- Energy Price Stability
- Decreased Opex and Capex Costs

Blake Herrschaft, PE

Blake.Herrschaft@dnvgl.com 619-955-0754

Betty Seto, Head of Department Betty.Seto@dnvgl.com 510-891-0446 ext. 44133

www.dnvgl.com

SAFER, SMARTER, GREENER