

Planning the Grid To Optimize Distributed Energy Resources

Presenters

Greg ThomsonPrograms Director
Clean Coalition

Jon Eric Thalman

Director of Electric Regulatory Strategy &

Transmission Asset Management

Pacific Gas & Electric

Clean Coalition Mission and Advisors

Mission

To accelerate the transition to renewable energy and a modern grid through technical, policy, and project development expertise.

Board of Advisors

Jeff Anderson

Co-founder and Former ED, Clean Economy Network

Josh Becker

General Partner and Co-founder, New Cycle Capital

Pat Burt

CEO, Palo Alto Tech Group; Councilman & Former Mayor, City of Palo Alto

Jeff Brothers

CEO, Sol Orchard

Jeffrey Byron

Vice Chairman National Board of Directors, Cleantech Open; Former Commissioner, CEC

Rick DeGolia

Senior Business Advisor, InVisM, Inc.

John Geesman

Former Commissioner, CEC

Eric Gimon

Independent Energy Expert

Patricia Glaza

Principal, Arsenal Venture Partners

Mark Z. Jacobson

Director of the Atmosphere/Energy Program & Professor of Civil and Environmental Engineering,
Stanford University

Dan Kammen

Director of the Renewable and Appropriate Energy Laboratory at UC Berkeley; Former Chief Technical Specialist for RE & EE, World Bank

Fred Keeley

Treasurer, Santa Cruz County, and Former Speaker pro Tempore of the California State Assembly

Felix Kramer

Founder, California Cars Initiative

Amory B. Lovins

Chairman and Chief Scientist, Rocky Mountain Institute

L. Hunter Lovins

President, Natural Capitalism Solutions

Ramamoorthy Ramesh

Founding Director, DOE SunShot Initiative

Governor Bill Ritter

Director, Colorado State University's Center for the New Energy Economy, and Former Colorado Governor

Terry Tamminen

Former Secretary of the California EPA and Special Advisor to CA Governor Arnold Schwarzenegger

Jim Weldon

Technology Executive

R. James Woolsey

Chairman, Foundation for the Defense of Democracies; Former Director of Central Intelligence (1993-1995)

Kurt Yeager

Vice Chairman, Galvin Electricity Initiative; Former CEO, Electric Power Research Institute

Clean Coalition Objectives

- From 2020 onward, all new electricity generated in the U.S. will come from at least:
 - 80% renewable sources
 - 25% local renewable sources
- PBy 2020, policies and programs will ensure the successful fulfillment of the above while reflecting the full value of local renewable energy including economic, environmental, and resilience benefits.

A Modern Power System: Smarter, More Distributed

Community Microgrid Initiative: Accelerating the Transition to a Modern Power System

Objectives

- Reach 25% or more of total energy consumed as local renewables while improving grid reliability
- Achieve technical and economic viability with cost-effective outcomes for communities and ratepayers
- Accelerate and scale deployments by partnering with utilities, utility commissions, and technology providers
- Strengthen local economies through increased community investment, stable energy prices, and reduced system costs

Result: A smarter distribution grid featuring more clean energy now, improved grid performance, and stronger long-term economics

Hunters Point Community Microgrid Project

Overview

- Innovative project in the Bayview-Hunters Point area of San Francisco, in collaboration with PG&E
- Showcase location demonstrating the value of Community Microgrids, including "DER Optimization"
- Scalable approach using existing tools that can be replicated easily by any utility, for any community area

The Hunters Point substation serves ~20,000 customers (about 90% residential, 10% commercial & industrial)

Legend **Hunters Point Substation & Served Communities** Redev Zone Substation boundary Hunters Point Substation boundary Google earth

Example DER Optimization: Advanced Inverters

- 1. 6AM:
- No PV impact

- 2. Noon:
- 20MW PV causes overvoltage
- 3. Noon:
- 20MW PV with advanced inverters set at 0.9 power factor stabilizes voltage

Methodology, DER Optimization: 4 Steps

4. Higher DG + DER Capacity

- Increase storage & local reserves (e.g. CHP) to flatten peaks and island essential services. Include system deferrals.
- Optimize via locations, sizes, types & costs

Utility Data

- Customer & transformer loads
- Network model & circuit map
- Equipment list & upgrade plans
- O&M schedule

Other data

- Solar insolation
- Weather forecasting
- Assumptions for DR/ EE/EV charging, etc.
- Performance specs, e.g. storage

3. Medium DG + DER Capacity

- Add lower-cost DER options such as DR/EE, EV charging, & cost-effective storage. Include system deferrals.
- Optimize via locations, sizes, types & costs

2. Baseline DG Capacity

- Vary locations & sizes of DG to define existing substation(s) capacity w/no upgrades. Include system deferrals.
- Use load tap changers, advanced inverters, etc. to manage voltage issues

1. Baseline Powerflow

- Acquire all data sets, validate data accuracy
- Model existing powerflow, including existing DG

Higher Cost DG + DER

capacity

Medium Cost

DG + DER capacity

grid reliability & power quality

Validate with utility & technology vendors

or improve

Low Cost

DG capacity

Baseline DG Capacity: Optimal Locations

Two criteria for finding optimal PV locations and sizes:

- 1. Robust feeder locations: less resistance (lower Ohms) means more capacity for local generation
- Matching load types: higher loads during daytime means better match for PV generation

Feeder map based on resistance (Ohms)

Additional Optimization: "Substation-as-a-System"

Connected feeders enables substation-wide optimizations, such as:

- Local Balancing: e.g. over-generation on certain feeders consumed by load on other feeders connected at the substation
- 2. Optimizing DER such as storage and demand response across the substation feeders
- 3. Optimizing settings, e.g. load tap changers, across the substation feeders

Initial Results: Baseline DG Capacity

Reached 30 MW of new PV, or 25% of total energy

- 20 MW added to select Commercial & Industrial sites matching low resistance locations with higher daytime loads
- 10 MW added to select Residential sites (multiple dwelling units) matching more robust feeder locations
- Excludes Redev Zone (feeders, expected loads, etc.)

No negative impacts

- No Out-of-Range voltages. Voltage regulation achieved using existing Load Tap Changers (advanced inverters not needed yet).
- No backfeeding to Transmission. Some "crossfeeding" between connected feeders in the same bank.

Baseline DG Capacity: Voltages & Major Power Flows, Weekdays (no PV vs. PV)

Baseline DG Capacity: LTC action, Per Feeder Power, Weekdays (no PV vs. PV)

PV: None

P١	/ :	20	C&	+ 1	.O I	Res
----	------------	----	---------------	------------	------	-----

Tap Change	Тар			Average	Тар			Average
<u>Summary</u>	Changes	Min Tap	Мах Тар	Тар	Changes	Min Tap	Мах Тар	Тар
Yosemite [96]	1	13	14	13	2	13	14	13
Bank 1 [51]	2	9	11	9	1	9	10	9
Bank 6 [52]	1	9	10	9	3	8	10	8

Sep	WkDay	Max	Load	Profiles	

	Sep	WkDay	Max	Load	Profiles
--	-----	-------	-----	------	----------

			Sep wkbay	iviax Load P	rofiles		Sep wkba			
Feeders			ŀ	w Thru Pw	r		k'			
			Min	Avg	Max	Noon	Min	Avg	Max	Noon
1101			3,548	5,046	6,541	6,236	1,756	3,330	4,953	1,756
1102		[52]	4,227	5,946	7,290	6,559	757	3,716	7,155	757
1107		9	2,918	4,079	4,965	4,493	832	2,674	4,880	832
1108		Bank	2,718	3,933	5,527	3,969	(440)	2,259	5,426	(397)
1109			4,797	5,779	6,890	6,106	98	3,472	6,321	98
1106		1]	4,406	5,892	7,047	6,925	3,929	4,744	6,355	3,929
1105		1[51	3,484	4,799	5,689	5,447	1,368	3,236	5,456	1,368
1104		h n	3,678	4,729	5,503	5,256	3,678	4,535	5,492	4,749
1103		Ba	3,788	5,038	6,405	5,319	3,660	4,410	6,370	3,681
401	Yos [96]		646	889	1,212	893	343	679	1,199	347
402	٨	6]	406	602	914	571	406	575	913	501

Feeder "Crossfeeding"

Baseline DG Capacity: Voltages & Major Power Flows, Weekends (no PV vs. PV)

PV: None PV: 20 C&I + 10 Res

22331102 22331107 22331108 22331109 22331106 22331105 [15]			Min V Base	Avg	Max ored pts
22331107 22331108 22331109 22331106 22331105 22331105					·
22331107 22331108 22331109 22331106 22331105	_		122.1	123.1	124.1
22331108	22331107	[52]	118.6	120.8	124.0
22331109 22331106 22331105		9	116.4	119.3	123.9
22331106 22331105 15 17		Bar	117.7	119.7	123.9
22331105 $\frac{5}{1}$	22331109		118.0	120.8	124.0
22331103	22331106	1]	121.7	123.0	124.7
22331104	_	⊢	121.8	122.9	124.7
		ank	122.3	123.9	125.5
22331103 ^m	_	ä	118.7	122.6	124.7
22490401 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	22490401)S [6]	118.9	122.0	124.8
22490402 S S	22490402	۲ ا6	122.2	123.8	124.9

k	W Thru Pw	r			k	W Thru Pw			
Min	Avg	Max	Noon	NoonDif	Min	Avg	Max	Noon	NoonDif
32,850	41,741	47,846	47,342		13,597	28,846	47,014	13,704	(33,638)
15,195	19,370	22,421	21,875		12,597	15,841	22,210	12,662	(9,213)
17,545	22,218	25,461	25,281		944	12,904	24,611	985	(24,296)
1,042	1,439	1,957	1,542		921	1,202	1,942	925	(617)

Baseline DG Capacity: LTC action, Per Feeder Power, Weekends (no PV vs. PV)

&I + 10 Res
į

Tap Change	Тар			Average	Тар			Average
<u>Summary</u>	Changes	Min Tap	Мах Тар	Тар	Changes	Min Tap	Мах Тар	Тар
Yosemite [96]	2	12	14	13	2	13	14	13
Bank 1 [51]	2	8	10	8	1	8	9	8
Bank 6 [52]	1	9	10	9	2	8	9	8

Sep WkEnd Min Load Profiles, no PV Sep WkEnd Min Load Profiles

				 			1		<u></u>		
Feeders	Feeders		k	W Thru Pw	ır			kW Thru Pwr			
			Min	Avg	Max	Noon		Min	Avg	Max	Noon
1101		1	3,417	4,387	5,367	5,304		828	2,673	4,310	828
1102	[52]		4,114	5,381	6,459	6,090		271	3,157	6,324	295
1107	nk 6		2,820	3,644	4,304	4,133		473	2,245	4,220	482
1108	Ban		2,700	3,765	5,119	4,076		(327)	2,091	5,018	(292)
1109			4,469	5,033	5,745	5,668		(331)	2,732	4,793	(331)
1106	=		4,331	5,484	6,333	6,327		3,314	4,337	5,987	3,335
1105	1 [51]		3,377	4,292	4,953	4,927		842	2,732	4,771	853
1104	Bank		3,675	4,668	5,417	5,209		3,675	4,474	5,405	4,703
1103	B		3,776	4,922	6,078	5,407		3,752	4,295	6,043	3,769
401	Yos [96]		636	851	1,104	921		372	641	1,092	375
402	Yos [96]		405	587	851	620		405	560	849	550

Feeder Backfeeding

Observation: For PV, C&I Customers Are Optimal

Lowest Hanging Fruit

1. Most Generation

Larger rooftop spaces generate more energy

2. Lowest System Costs

Larger systems reduce overall costs

3. Best Grid Locations

Large loads served by robust feeder segments

4. Matching Load Profiles

Larger daytime loads match solar generation

5. Financially Motivated

Larger bills w/demand response charges, plus rooftop leasing opportunity

Hunters Point Load Profiles: C&I Match for PV

Scalability: Capacity Modeling Enables "Plug-n-Play"

Connecting "one rooftop at a time" is expensive and disruptive. The industry can achieve scale and simplicity by planning for cost-effective local renewable capacity. This "Capacity Planning" enables renewables to connect in bulk – a "Plug-n-Play" model – and is analogous to how the industry plans for transmission capacity. Examples:

EV charging, lower-cost storage

 Additional storage and local reserves (e.g. CHP) to flatten peaks and/or maintain essential services in outages

Distribution Grid

efficiency

Minimal grid upgrades

voltage issues

Advanced inverters to manage

Next Steps: Q4 '14 - Q1 '15

Medium DG + DER Capacity

- Add lower-cost DER solutions including DR, EE, EV charging, and costeffective storage to reduce evening ramp, for example
- Run cost analysis including equipment/T&D deferrals
- Adjust (increase) local renewables if optimal

Higher DG + DER Capacity

- Add more storage plus local reserves (e.g. CHP) to further flatten load shapes, simplify transmission needs, and maintain essential services in case of outages
- Run cost analysis including equipment/T&D deferrals
- Adjust (increase) local renewables if optimal
- Leading to final reports, including methodology spec and recommendations for scalable and accelerated procurement & interconnection

Peek at the Future of Bayview-Hunters Point

Ecoplexus project at the Valencia Gardens Apartments in SF. ~800 kW serving ~80% of the total annual load.

Q&A

Thanks for listening

Questions, thoughts, ideas?