

Valencia Gardens Energy Storage A non-wires alternative to distribution infrastructure upgrades

The Valencia Gardens Energy Storage (VGES) project is located at a large public housing complex in San

Francisco's Mission District that accommodates hundreds of underserved families and seniors within the Pacific Gas & Electric (PG&E) utility service territory. The Clean Coalition, along with its partners - PATHION, Inc., REP Energy, PG&E, and the California Independent System Operator (CAISO) are developing an innovative project in San Francisco that will demonstrate the use of energy storage to defer grid upgrades. The VGES project will install 1096 kilowatt-hours (kWh) of energy storage, coupled with two 250-kilowatt (kW) inverters in front of the meter; the project will use a wholesale distribution tariff (WDT) wholesale interconnection and connect to the distribution grid. The energy storage is co-located on the same feeder with an existing 580 kW rooftop PV system (installed in

2011), located on a circuit with a peak load of 570 kW. Source: EcoPlexus; Valencia Gardens complex

Non-wires alternatives (NWA) are a growing use-case for distributed energy resources (DER). NWA can provide electric utilities, distribution operators, and transmission operators with alternative solutions to traditional grid upgrades involving new poles and wires, which can be expensive to construct, own, and maintain. Furthermore, traditional poles and wires are a long-term investment that has a high risk of becoming a stranded asset, especially when used as a permanent, expensive solution to what could be a temporary problem on the grid. The table below summarizes typical issues that drive new grid infrastructure investment.

Utility issue	Traditional solution	Non-wires solution	Example project
Forecast transmission	New targeted local	Peak load mitigation,	CAISO 2018 Transmission
reliability needs are	transmission	such as energy	Planning Process canceled
driven by load growth	n by load growth infrastructure	efficiency and rooftop	\$2.6 billion in planned
		PV	projects due to higher DER
			and energy efficiency than
			forecast ¹
Supplies of natural gas	Install temporary diesel	Install energy storage	In 2015, the California
must be curtailed,	generators as a peaking	projects to handle peak	Public Utilities
limiting availability of	resource until gas	loads	Commission (CPUC)
peaker plants to serve	supply can be restored		approved 100 MW of
peak loads			energy storage projects in
			Southern California Edison

Table 1: Summary of utili	y issues, traditiona	l solutions, and	non-wires solutions
---------------------------	----------------------	------------------	---------------------

¹ http://www.caiso.com/Documents/BoardApproves2017-18TransmissionPlan_CRRRuleChanges.pdf

Making Clean Local Energy Accessible Now

			(SCE) and San Diego Gas & Electric (SDG&E) territories ²
Planned load growth of	Build new transmission	Combine multiple DER	SCE 2013 PRP program
greater than 200 MW	or gas peaker plant to	solutions to reduce net	procured 260 MW from a
combined with plant	serve region	load and provide locally	mix of solar, demand
retirement may lead to		generated power	response, energy storage,
significant local			and energy efficiency ³
capacity shortages			
Load growth forecasts	Build a new substation	New York Public	Brooklyn Queens
predict exceeding	for \$1.2 billion	Services Commission	Demand Management
capacity of local		authorizes	Program by Con Ed in
distribution planning		procurement of 17 MW	2014-2018 demonstrates
area		of customer-side DER	substation deferral ⁴
		and 52 MW of non-	
		traditional utility-side	
		projects	
Load growth forecasts	Upgrade substation	Meet capacity need	CPUC 2018 IOU
predict exceeding	and add or reconductor	with DER	Distribution Deferral
capacity of distribution	circuits		Opportunities Reports
substations or circuits			identify DER-based
			deferral options
Uncertain distribution	Permanently upgrade	Temporarily contract	In 2015, the CPUC
circuit load forecast	substation and add or	for energy storage and	approved 100 MW of
	reconductor circuits	demand response/load	energy storage projects in
		shift pending long-term	SCE and SDG&E
		need determination	territories ⁵

DER NWA offer multi-use applications (MUA) and value stacking, which has the potential to drastically improve energy storage economics and lead to higher adoption rates. DER can provide multiple services (such as capacity and voltage regulation) at the same time, offering an alternative to conventional capacity investments in distribution, transmission, and generation. Stacking these values increases the cost-effectiveness of NWA, allowing DER to spread their costs across multiple value streams and thereby offer each component service at a lower bundled price. These services include:

- Local generation capacity, flexible capacity, and system capacity in the Resource Adequacy domain
- Frequency regulation, spinning reserve, non-spinning reserves, and flexible ramping products in the wholesale market

² "DER and the *Non-Wires Solutions* Opportunity," https://www.seia.org/sites/default/files/2018-05/SEIA-GridMod-Series-5 2018-May-Final.pdf

³ Ibid

⁴ Ibid

⁵ "DER and the *Non-Wires Solutions* Opportunity," https://www.seia.org/sites/default/files/2018-05/SEIA-GridMod-Series-5_2018-May-Final.pdf

- Inertia, primary frequency response, voltage support, black start, and infrastructure deferral in the transmission domain
- Capacity, back-tie reliability services, voltage support, and microgrid resilience at the distribution level
- Backup power, demand charge management, self-consumption, time-of-use (TOU) management, and demand response participation in the customer domain

NWA are evaluated against conventional investments and prioritized based upon cost-effectiveness and assessment of DER sourcing and siting opportunities in the target need area.

Example 2019 distribution deferral opportunities	Timeframe	Traditional	MW	MWh
need/rationale:		cost	need	
 Driven by base demand 	2.5 years	\$3,850,000	1.8	5.6
 Sufficient Integrated Capacity Analysis 				
(ICA) on all four circuits				
 DER sited to offload four circuits 				
 Area is landlocked; difficult to build ties 	3 years	\$3,900,000	5.7	22
and offload				
 Sufficient ICA on both circuits 				
• Driven by 800-home development with				
uncertainty				
• Driven by development of 250 new homes	3 years	\$5,400,000	13	25
• DER sited to offload three circuits to defer				
circuit-level need				
• DER can be sited across seven circuits to				
defer substation need				
 Driven by housing, hospital, and 	2 years	\$3,800,000	5.2	60
commercial/industrial development				
 ICA limited by voltage constraints 				
 DER sited at a single circuit 				

While the renewable energy and DER industries have conducted extensive paper studies on the potential for DER to solve these issues, there are few demonstrations and proven use-cases. Of the demonstrations that already exist, many if not all are owned by the utilities that they serve, which offers little opportunity for third-party owners to participate in this growing market segment, and limits the commercial viability of such solutions.

Key innovations that will be demonstrated by VGES include:

- Utilizing energy storage to increase the PV hosting capacity of the distribution feeder branch by 33%, enabling the addition of 250 kW increased hosting capacity to a highly congested feeder in San Francisco's Mission District
- Third-party ownership of energy storage assets that provide services to PG&E and CAISO
- Interoperability of energy storage to participate in CAISO markets and potential future PG&E markets
- Contracting on-site energy storage to participate in multiple markets through optimization of scheduled battery allocation

• A market mechanism that advances the regulatory and interconnection frameworks so that they fully value and support the energy storage solution as demonstrated via this project, while also rewarding owners for the use of their property — directly analogous to the telecommunications industry leasing property space for mobile phone towers

This work is currently funded by the California Energy Commission under grant agreement #EPC-16-073. The grant funds come from the ratepayer-funded EPIC program's Triennial Investment Plan Phase II. For more information on the VGES project, please visit our website at <u>www.clean-coaliton.org/ourwork/VGES</u>.