Clean Coalition

Goleta Load Pocket Community Microgrid (GLPCM) Renewables-driven Resilience for the Santa Barbara Region

Craig Lewis Executive Director 650-796-2353 mobile craig@clean-coalition.org

Making Clean Local Energy Accessible Now

14 March 2020

<u>Mission</u>

To accelerate the transition to renewable energy and a modern grid through technical, policy, and project development expertise.

Renewable Energy End-Game

100% renewable energy; 25% local, interconnected within the distribution grid and ensuring resilience without dependence on the transmission grid; and 75% remote, fully dependent on the transmission grid for serving loads.

Community Microgrids are the grid of the future

A Community Microgrid is a new approach for designing and operating the electric grid, stacked with local renewables and staged for resilience.

Key features:

- A targeted and coordinated distribution grid area served by one or more substations – ultimately including a transmissiondistribution substation that sets the stage for Distribution System Operator (DSO) performance.
- Ability to utilize existing distribution grid infrastructure to serve the Community Microgrid during broader grid outages
- High penetrations of local renewables and other distributed energy resources (DER) such as energy storage and demand response.
- <u>Staged capability</u> for indefinite renewables-driven backup power for critical community facilities across the grid area achieved by 25% local renewables mix.
- A solution that can be readily extended throughout a utility service territory and replicated into any utility service territory around the world.

Goleta Load Pocket (GLP)

Clean Coalition

- GLP spans 70 miles of California coastline, from Point Conception to Lake Casitas, encompassing the cities of Goleta, Santa Barbara (including Montecito), and Carpinteria.
- GLP is highly transmission-vulnerable and disaster-prone (fire, landslide, earthquake).
- 200 megawatts (MW) of solar and 400 megawatt-hours (MWh) of energy storage will provide 100% protection to GLP against a complete transmission outage ("N-2 event").
 - 200 MW of solar is equivalent to about 5 times the amount of solar currently deployed in the GLP and represents about 25% of the energy mix.
 - Multi-GWs of solar siting opportunity exists on commercial-scale built-environments like parking lots, parking structures, and rooftops; and 200 MW represents about 7% of the technical siting potential.
 - Other resources like energy efficiency, demand response, and offshore wind can significantly reduce solar+storage requirements.

Community Microgrid key stakeholders

Solar Microgrids coming to Santa Barbara schools

Clean Coalition helps Santa Barbara Unified School District start massive solar microgrid initiative

By Kelsey Misbrener | December 18, 2019

f 💟 in 👰 🛨

The Santa Barbara Unified School District (SBUSD) has unanimously approved an ambitious initiative with the Clean Coalition, a nonprofit organization, and Sage Energy Consulting to stage solar-driven microgrids and electric vehicle charging infrastructure (EVCI) at schools throughout the District. The microgrids will feature solar and energy storage that can provide long-duration resilience, along with EVCI that supports District staff and students during the day — and provides overnight charging options for neighbors who have challenges installing electric vehicle chargers where they live.

Making Clean Local Energy Accessible Now

Clean

Clean

Goleta Substation has eight feeders, all 66kV, that serve the entire GLP

Core load area of the GLP

Target 66kV feeder area of the GLP

Clean Coalition

Core target 66kV feeder area of the GLP

Target 66kV feeder grid area block diagram

Core GLP with SCE grid layout & outage zones

Full GLP with SCE grid outage zones

Backup Slides

Core target 66kV feeder area of the GLP – Uniform Generation values

Clean Coalition

Uniform Generation values – narrower view

Clean Coalition

- Proposed 160-240 MWh Battery
- University of California Santa Barbara
- Deckers Outdoor Corporation

Making Clean Local Energy Accessible Now

Direct Relief

Fire Stations

Substations

11 to 35

6 to 11

2 to 6

0 to 2

Full GLP with SCE substations, low voltage distribution circuits, and grid outage zones

Core GLP with SCE substations, 220 kV transmission path, and 66 kV distribution circuits

Making Clean Local Energy Accessible Now

Clean /

Coalition

SBAM grid area – flow diagram

