Clean Coalition Solar Microgrids

delivering unparalleled economic, environmental, and resilience benefits

Craig Lewis Executive Director 650-796-2353 mobile craig@clean-coalition.org

Making Clean Local Energy Accessible Now

30 April 2024

<u>Mission</u>

To accelerate the transition to renewable energy and a modern grid through technical, policy, and project development expertise.

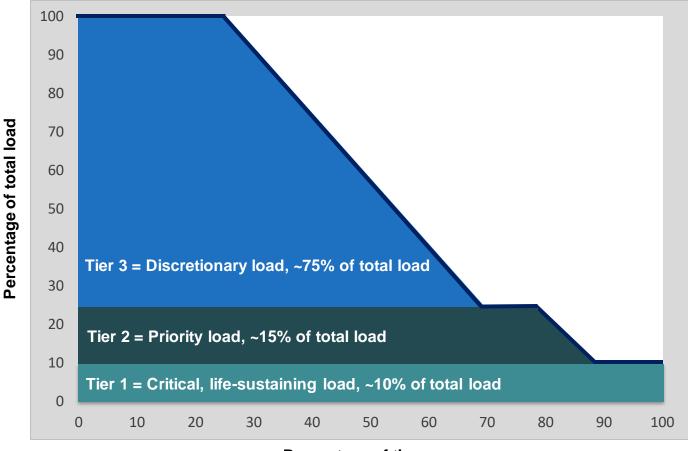
Renewable Energy End-Game

100% renewable energy; 25% local, interconnected within the distribution grid and ensuring resilience without dependence on the transmission grid; and 75% remote, fully dependent on the transmission grid for serving loads.

Update on the GLP Community Microgrid

Goleta Load Pocket (GLP)

Clean Coalition


- GLP spans 70 miles of California coastline, from Point Conception to Lake Casitas, encompassing the cities of Goleta, Santa Barbara (including Montecito), and Carpinteria.
- GLP is highly transmission-vulnerable and disaster-prone (fire, landslide, earthquake).
- 200 megawatts (MW) of solar and 400 megawatt-hours (MWh) of energy storage will provide 100% protection to GLP against a complete transmission outage ("N-2 event").
 - 200 MW of solar is equivalent to about 5 times the amount of solar currently deployed in the GLP and represents about 25% of the energy mix.
 - Multi-GWs of solar siting opportunity exists on commercial-scale built-environments like parking lots, parking structures, and rooftops; and 200 MW represents about 7% of the technical siting potential.
 - Other resources like energy efficiency, demand response, and offshore wind can significantly reduce solar+storage requirements.

Value-of-Resilience (VOR)

Typical load tier resilience from Solar Microgrids

Clean Coalition

Percentage of time

Percentage of time online for Tier 1, 2, and 3 loads for a Solar Microgrid designed for the University of California Santa Barbara (UCSB) with enough solar to achieve net zero and 200 kWh of energy storage per 100 kW solar.

Diesel generators are designed for limited resilience

Percentage of total load Tier 3 = Discretionary load, ~75% of total load Priority load, ~15% of total load Tier 2 Critical, life-sustaining load, ~10% of total load

Percentage of time

A typical diesel generator is configured to maintain 25% of the normal load for two days. If diesel fuel cannot be resupplied within two days, goodbye. This is hardly a solution for increasingly necessary long-term resilience. In California, Solar Microgrids provide a vastly superior trifecta of economic, environmental, and resilience benefits.

Clean Coalition

VOR123

VOR123 is the value-of-resilience (VOR) from Solar Microgrids methodology that the Clean Coalition has developed to normalize VOR across all types of facilities & geographies.
The VOR normalization is founded in tiering loads into three categories: Tier 1 (critical), Tier 2 (priority), and Tier 3 (discretionary). Since each Tier has its own resilience requirement and VOR, this methodology is called VOR123.

VOR123 webinar

https://clean-coalition.org/news/webinarvaluing-resilience-solar-microgrids-thursday-<u>5-nov-2020/</u>

Solar Microgrid Methodology

Solar Microgrid Methodology for feasibility studies

Clean Coalition

Step 1 📄 S		Step 2	Step 3		Step 4		Step 5
<u>Load</u> <u>Profiles</u>		<u>Resource</u> <u>Scenarios</u>	<u>Site</u> Layouts		<u>Economic</u> <u>Analysis</u>		<u>Reporting &</u> <u>Recommendations</u>
 <u>Baseline</u>: recent annual loads. <u>Master</u>: adds future expected loads, <u>e.g.</u> EV charging. <u>Critical</u>: loads required to be maintained during outages. Industry Tools: Clean Coalition: load analysis calculators. UtilityAPI: 15- minute load 		 Optimal solar, storage, and other potential onsite resources. Sizing and combinations to achieve the required critical load and economic outcomes. Industry Tools: Helioscope: solar siting. Energy Toolbase: resource sizing. 	 Specific locations & sizing for solar, storage, and any other viable resources. Location of key electrical assets e.g. panels, etc. Energy usage profiles including load profiles. Industry Tools: Clean Coalition: site layout tool. 		 Costs and financing options covering each viable resource scenario. Added resilience value. Industry Tools: Energy Toolbase: economic analysis. Clean Coalition: resilience calculator (e.g. avoided diesel). 		 Project Review Meetings. Reports and Presentations. Recommended options & next steps.
intervals.							

Santa Barbara Unified School District (SBUSD) Solar Microgrids case study

Santa Barbara Unified School District (SBUSD)

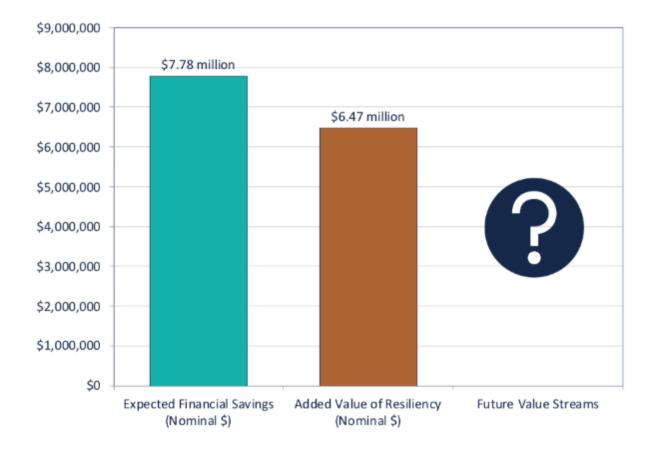
- The entire Santa Barbara region is surrounded by extreme fire risk (earthquake & landslide risk too) and is extremely vulnerable to electricity grid outages.
- The SBUSD is a major school district that increasingly recognizes the value-of-resilience (VOR) and has embraced the Clean Coalition's vision to implement Solar Microgrids at a number of its key schools and other critical facilities.
- SMHS is in the middle of the extensive SBUSD service area.

Clean

Six SBUSD Solar Microgrid sites

Dos Pueblos High School

District Food Warehouse & District Office

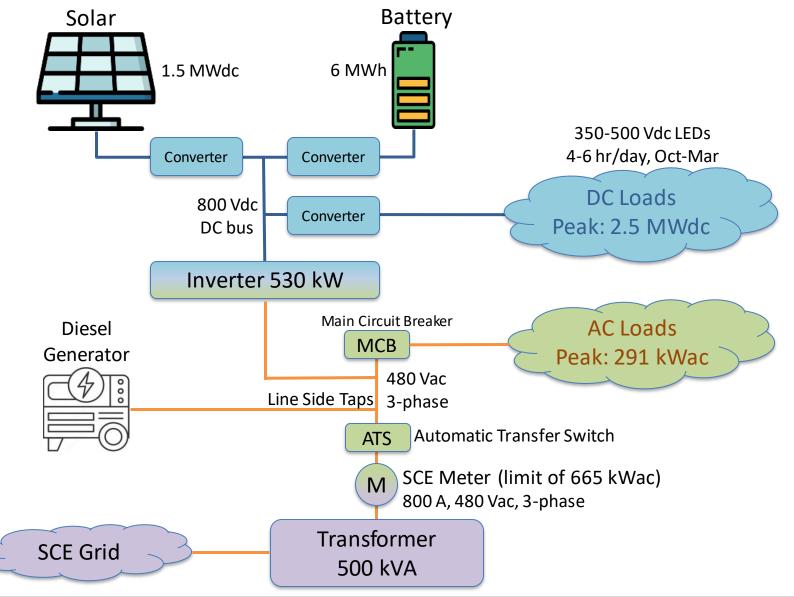

Santa Barbara High School

San Marcos High School

Guaranteed SBUSD bill savings and free VOR

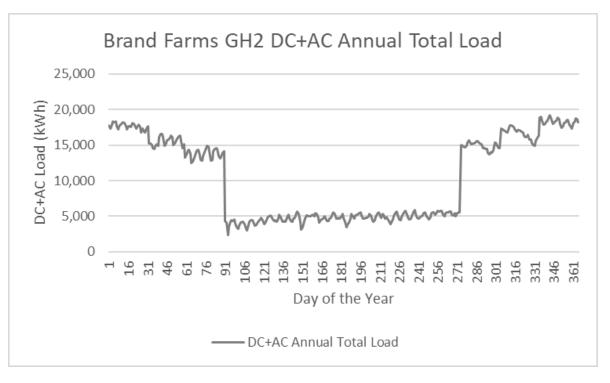
Lifetime (28-year) Bill Savings and Added Value of Resiliency

Large farm case study in Carpinteria, CA

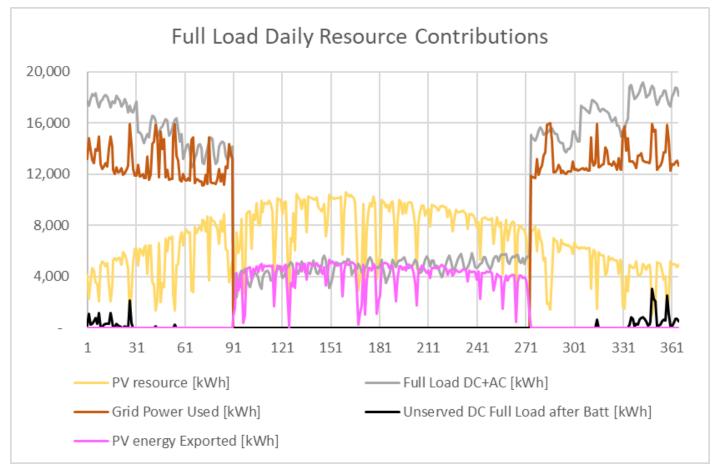

1.5 MWdc of solar for GH2 meter

Clean Coalition

	Brand Farms Greenhouse #2 Meter Solar Microgrid Site Layout
C-4 C-5	 Service Meter #259000-062804 3 MW / 6 MWh BESS Potential Location
R-1	Potential Solar Siting Locations:
	C-1 710 kW Solar Canopy
R-2	C-2 142 kW Solar Canopy
	C-3 142 kW Solar Canopy
	C-4 89 kW Solar Canopy
	C-5 269 kW Solar Canopy
	R-1 84 kW Rooftop Solar
	R-2 66 kW Rooftop Solar
C-1	Total Solar Siting Potential:1,500 kW• Annual Generation:2,492,565
C-3	Total Annual Loads: • Master Load Profile: 3,804,085 kW


DC-coupled Solar Microgrid to serve 2.5 MWdc of added DC loads to Greenhouse2 meter

Greenhouse2 economics assuming all future AC & DC loads can be served by the grid



Brand Farms Greenhouse 2 (DC + AC Loads) Business-As-Usual Electricity Bill Cost Based on TOU-8-D and 3CE Rates												
		Business-As-Usua a 5% Util	al Blended Utility F lity Price Increase		25 Year Electricity Bill Cost							
Meter	Scenario Types	Year 1	Year 10	Year 25	Year 1 Total Electricity Bill Cost	Year 10 Electricity Bill Cost	Year 25 Electricity Bill Cost	Total Cumulative 25 Year Electricity Bill Cost				
Greenhouse 2 (DC + AC)	No Solar or Storage	\$0.15	\$0.23	\$0.47	\$1,038,158	\$1,610,524	\$3,348,163	\$49,548,269				

Greenhouse2 Energy Flow after addition of \$10 million Clean Solar Microgrid and 2.5 MWdc of DC loads Coalition

Energy Flow Diagram 1.5 MW solar and 3 MW / 6 MWh energy storage

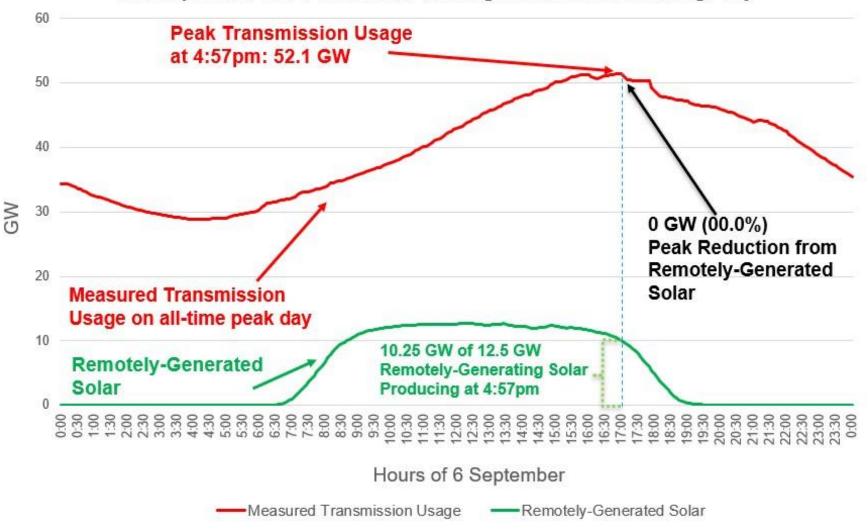
Backup Slides

Benefits of Renewables-driven Microgrids

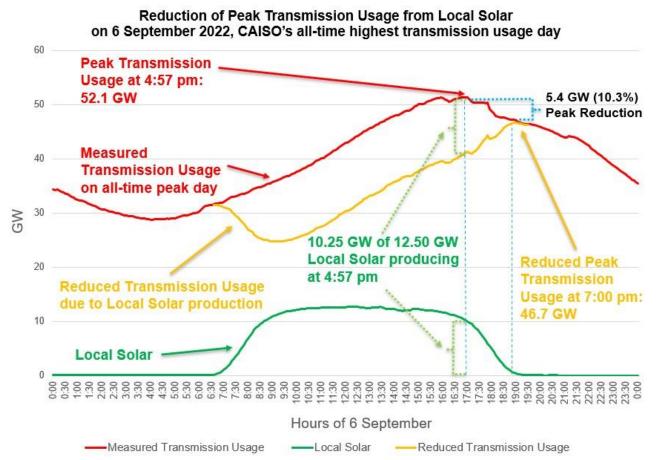

- Economic
 - Reduces peak transmission usage, which is the biggest driver of increasing electricity rates.
 - Provides value-of-resilience (VOR) that is simply unavailable from remote generation and that is superior compared to fossil-fueled generators.
 - When behind-the-meter (BTM):
 - Provides electricity costs savings compared to buying electricity from the utility.
 - Provides a fixed cost of electricity compared to rapidly rising utility costs.
- Environmental
 - Provides solar electricity, a pure renewable energy resource.
 - Optimizes grid citizenship by reducing peak usage of the grid when it is most stressed, during the peak periods, which in California are 4-9pm.
 - Eliminates energy losses associated with traversing the transmission grid. An average, more than 10% of remote energy is lost over the transmission grid, due to a combination of resistance and congestion.
 - Reduces the environmental impact of central generation, which typically consumes open space for the generation & transmission assets.
- Resilience
 - Provides 100% ride-through during grid outages of limited durations. Any ride-through duration can be accommodated with cost being correlated to duration.
 - Provides optionality for indefinite resilience for at least the most critical loads, again with cost being correlated to the percentage of load being served with 100% resilience.
 - Accommodates optional fossil generation as an emergency backup resource that can be minimized.

- A <u>microgrid</u> is a combination of energy resources, definitely including generation, that are coordinated to serve specified loads, including in an islanded fashion.
- A <u>Solar Microgrid</u> is a behind-the-meter (BTM) microgrid that solely relies on solar for energy generation when islanded. A Solar Microgrid relies on energy storage to time-shift solar and ensure energy availability at night etc.
- A <u>Hybrid Solar Microgrid</u> is a Solar Microgrid that includes additional sources of energy generation, beyond just solar.
- A <u>Community Microgrid</u> a microgrid that covers a target grid area and relies on existing distribution feeders (ie, power lines) to operate when islanded. Community Microgrids typically include both front-of-meter (FOM) and BTM resources, including Solar Microgrids, and require effective participation from utilities, which have mostly erected barriers to date.

Local means within the distribution grid

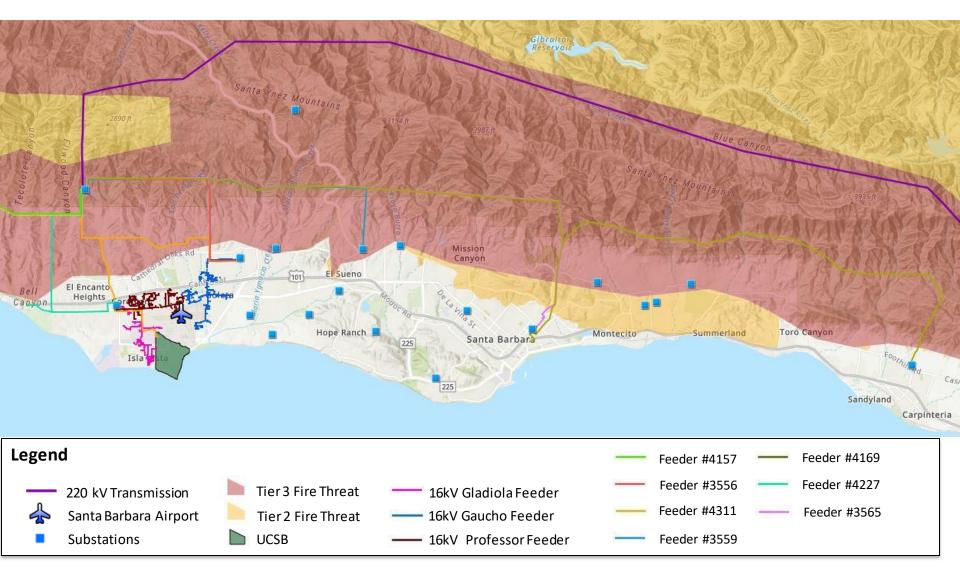


Transmission stress & cost is a massive problem

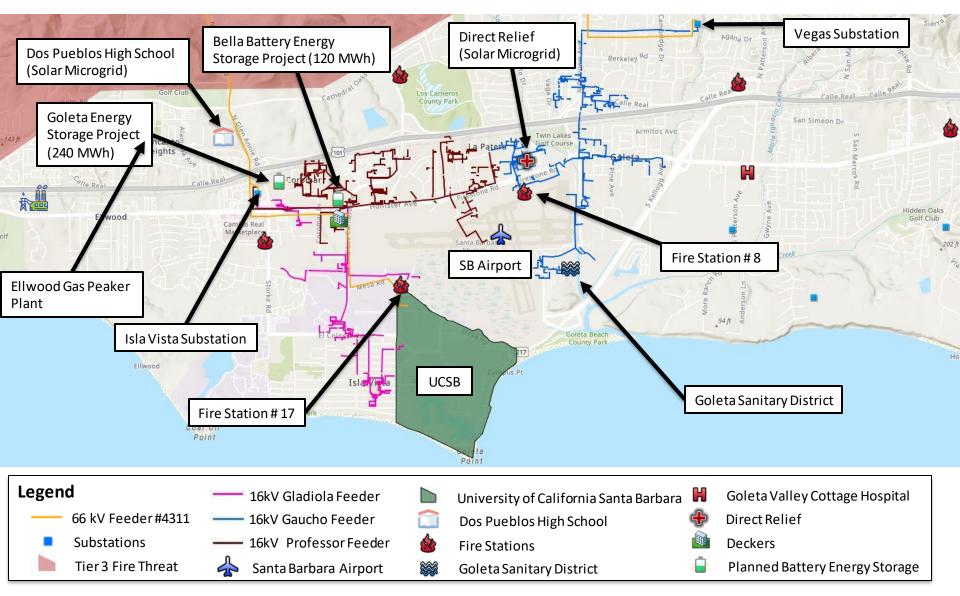


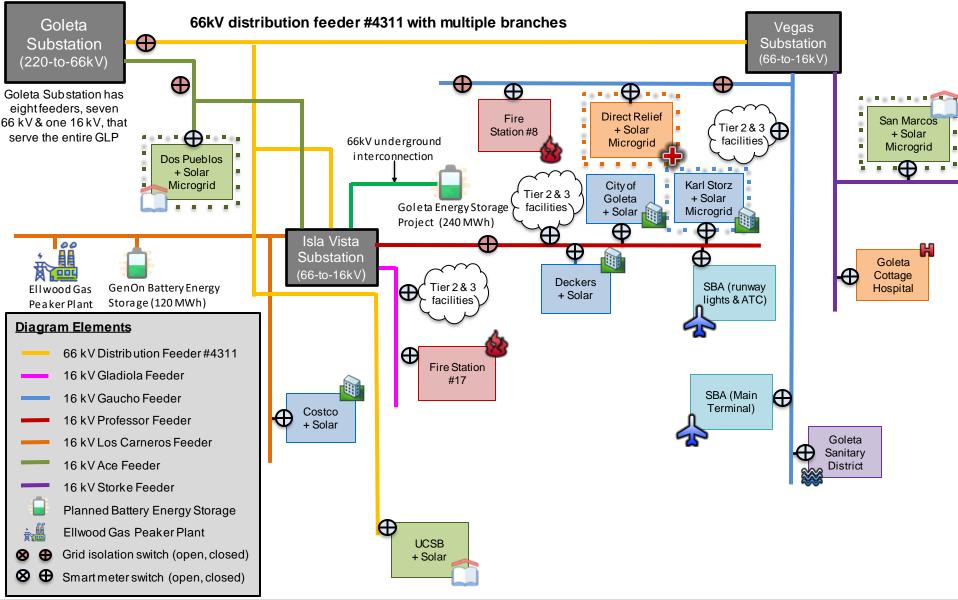
No Reduction of Peak Transmission Usage from Remotely-Generated Solar on 6 September 2022, CAISO's all-time highest transmission usage day

Local Solar reduces transmission stress & costs



- 1. Local Solar reduces Peak Transmission Usage by close to 50% of the installed capacity. The effect is amplified by energy storage.
- 2. Bringing down the peak with distributed generation and demand flexibility will reduce transmission investments, saving ratepayers hundreds of billions of dollars over the next two decades.
- 3. Reducing the Peak Transmission Usage by around 10% is enough to prevent most major outages.


Core load area of the GLP


Target 66kV feeder serves critical GLP loads

Clean Coalition

Target 66kV feeder grid area block diagram

Clean Coalition

