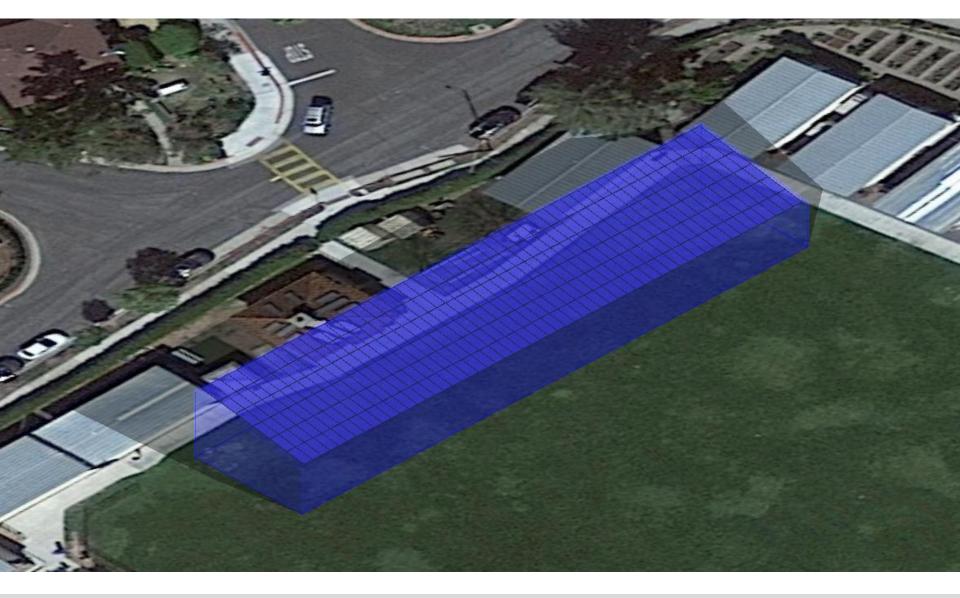


Peabody Solar Microgrid

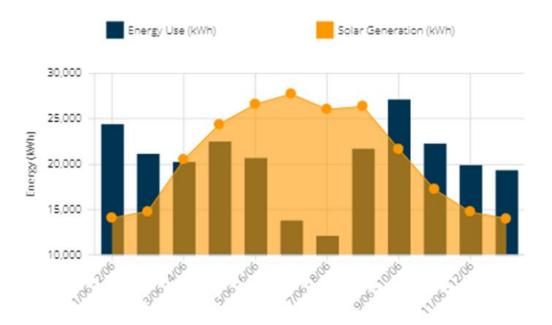
Craig Lewis Executive Director 650-796-2353 mobile craig@clean-coalition.org

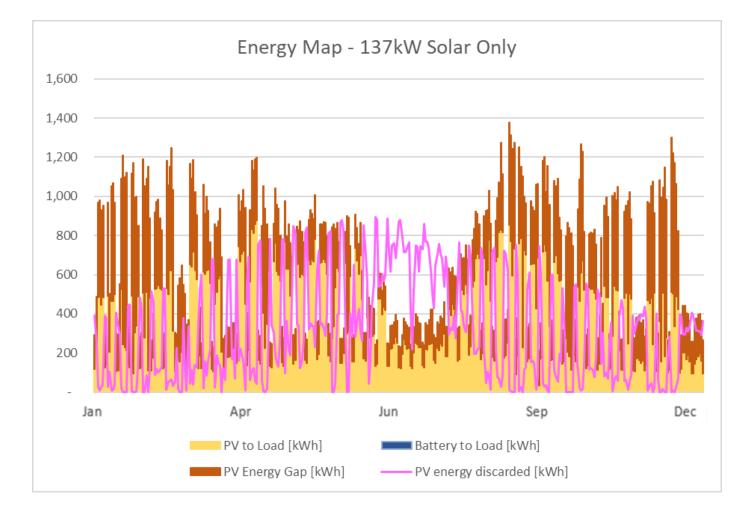
Roosevelt is a proxy for Peabody solar canopy


Peabody Charter - 137 kW solar canopy (102% NZE)

Clean Coalition

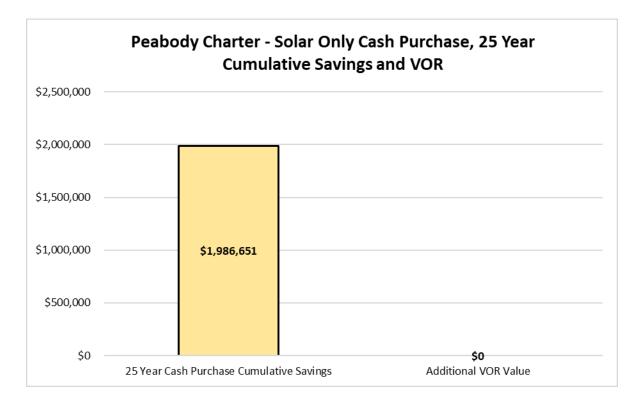
Peabody Charter - 137 kW solar canopy (102% NZE)


Peabody Chai	Peabody Charter - Current Load and Billing Analysis Based on SBCE 100% Green TOU-GS-2-E Rate Schedule								
Load Profile Type	Total Annual load (kWh)	Peak Demand (kW)	Effective Blended Rate ¢/kWh	Total Annual Bill	Energy Charges	Demand Charges	NBC's & Fixed Charges		
Baseline Load Profile	244,114	173	31.4	\$76,612	\$45,257	\$23,494	\$7,861		



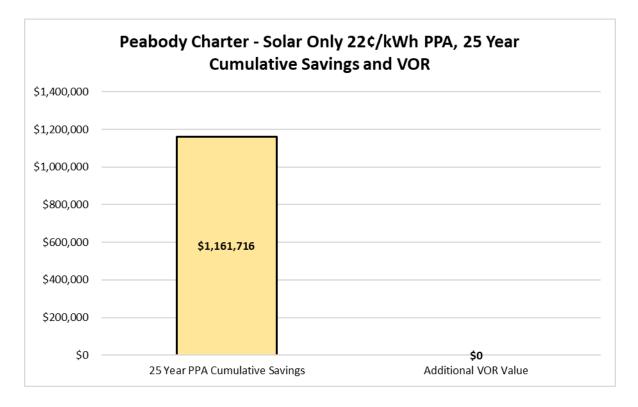
Solar only

Peabody Charter - Future Solar Only Billing Analysis Based on SBCE 100% Green TOU-GS-2-E Rate Schedule								
Load Profile Type	Annual Load from Master Load Profile (kWh)	Peak Demand (kW)	Effective Blended Rate ¢/kWh	Total Annual Bill	Energy Charges	Demand Charges	NBC's & Fixed Charges	
Baseline Load Profile	244,114	173	8.77	\$21,406	\$0	\$16,882	\$4,524	


Clean

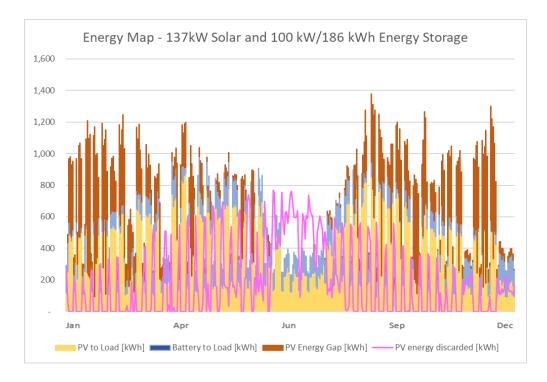
Coalition

Peabody Charter – 137 kW solar only 25 year cash purchase economics


Р	eabody Charte	er - Solar Only	25 Year Cash	Purchase Econo	omic Details			
Annual	Solar Only Cash Purchase - 25 Year Costs and Savings							
Electricity Bill Cost (Pre-Solar)	Capital Expenditure (Capex)	Operational Expenditure (Opex)	Incentives	Net Total Project Cost	Cumulative Utility Bill Savings	Net Cumulative Savings	25 Year Value	
\$76,612	(\$444,600)	(\$146,266)	\$133,380	(\$457,486)	\$2,444,137	\$1,986,651	\$0	
	Annual Electricity Bill Cost (Pre-Solar)	Annual Electricity Bill Cost (Pre-Solar) (Capex)	Annual Electricity Bill Cost (Pre-Solar) (Capex) Cost (Opex)	Annual Electricity Bill Cost (Pre-Solar) Expenditure (Capex) Expenditure (Opex)	AnnualSolar Only Cash Purchase - 25 Year Costs andElectricity BillCapitalOperationalCost (Pre-Solar)ExpenditureExpenditure(Capex)(Opex)Incentives	AnnualCapitalOperationalNet Total ProjectCumulativeCost (Pre-Solar)ExpenditureExpenditureIncentivesCostUtility Bill(Capex)(Opex)(Opex)Savings	Annual Electricity Bill Cost (Pre-Solar)Capital Expenditure (Capex)Operational Expenditure (Opex)Net Total Project CostCumulative Utility Bill SavingsNet Cumulative Savings	

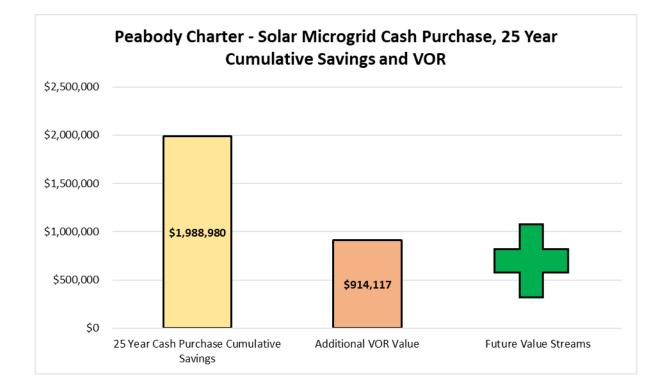
Peabody Charter – 137 kW solar only 25 year PPA economics

Peabody Charter - Solar Only 25 Year PPA Economic Details								
Annual		Value of Resilience						
Facility	Electricity Bill Cost (Pre-Solar)	Average Annual PPA Payment	25 Year Total PPA Payments	Cumulative Utility Bill Savings	Net Cumulative Savings	Year 1 Savings	25 Year Value	
Peabody Charter	\$76,612	(\$51,297)	(\$1,282,421)	\$2,444,137	\$1,161,716	\$635	\$0	

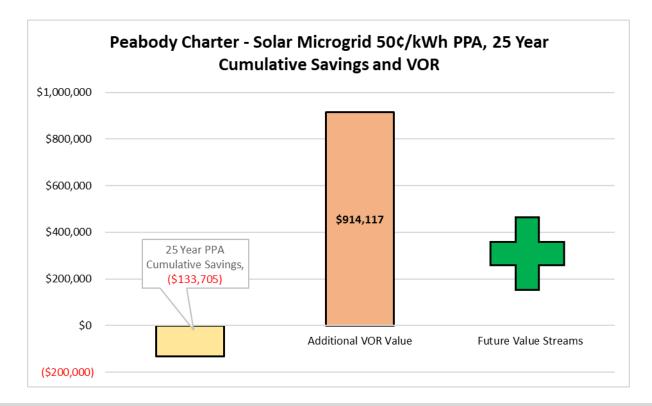


Solar Microgrid

Peabody Charter - Energy map using 137 kW solar and 100 kW / 186 kWh energy storage

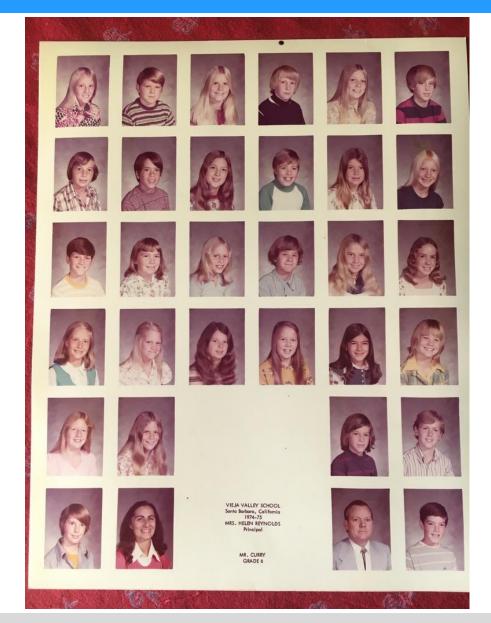

	Peabody Ch	narter - Battery En	ergy Storage Sizing	g, System Cost, and	Resilience		
	Recommended Ba	attery System Size	Battery Sy	ystem Cost	Indefinite Resilience		
Baseline Load Profile Peak Demand (kW)	Standard Option Battery Power Capacity (kW)	Standard Option Battery Energy Capacity (kWh)	Total Battery Energy Storage System Cost	Battery Energy Storage System Cost per kWh	Total Percentage of Load Kept Online Indefinitely (Year 1)	Total Percentage of Load Kept Online Indefinitely (Year 15 - before replacement)	
173	100	186	\$279,000	\$1,500	17.0%	13.0%	

Peabody Charter – Solar Microgrid 25 year cash purchase economics


	Р	eabody Charte	r - Solar Microg	rid 25 Year Ca	sh Purchase Eco	onomic Details			
	Annual Electricity	Solar Microgrid Cash Purchase - 25 Year Costs and Savings							
Facility	Bill Cost (Pre- Solar Microgrid)	Capital Expenditure (Capex)	Operational Expenditure (Opex)	Incentives	Net Total Project Cost	Cumulative Utility Bill Savings	Net Cumulative Savings	25 Year Value	
Peabody Charter	\$76,612	(\$723,600)	(\$285,388)	\$217,080	(\$791,908)	\$2,780,888	\$1,988,980	\$914,117	

Peabody Charter – Solar Microgrid 25 year PPA economics

	Doo	hady Chartor	Solar Microgri	d 25 Year PPA E	conomic Dotai				
	Pea	bouy charter -	Solar Witchogri	u 25 Tedr PPA E		15			
	Annual Electricity		Solar Microgrid 50¢/kWh PPA - 25 Year Costs and Savings						
Facility	Bill Cost (Pre- Solar Microgrid)	Average Annual PPA Payment	25 Year Total PPA Payments	Cumulative Utility Bill Savings	Net Cumulative Savings	Year 1 Savings	25 Year Value		
Peabody Charter	\$76,612	(\$116,584)	(\$2,914,593)	\$2,780,888	(\$133,705)	(\$60,132)	\$914,117		



Backup slides

6th Grade is the best!!!

Ms Craviotto is the best!!! (4th Grade teacher)

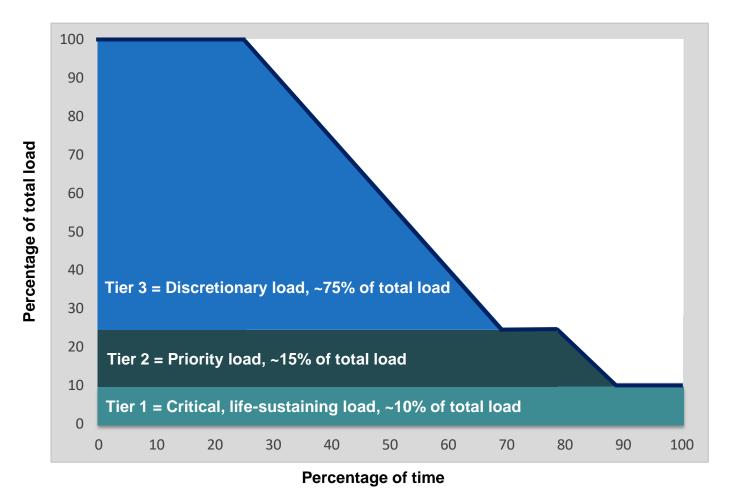
Clean Coalition

<u>Mission</u>

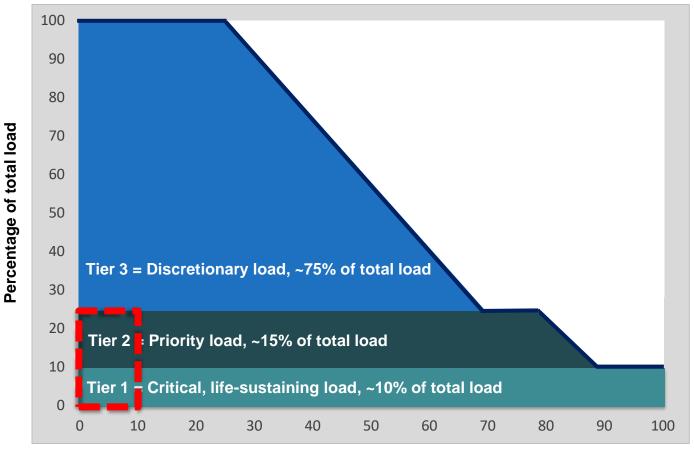
To accelerate the transition to renewable energy and a modern grid through technical, policy, and project development expertise.

Renewable Energy End-Game

100% renewable energy; 25% local, interconnected within the distribution grid and ensuring resilience without dependence on the transmission grid; and 75% remote, fully dependent on the transmission grid for serving loads.


Microgrids in the Clean Coalition's world

- A <u>microgrid</u> is a combination of energy resources, definitely including generation, that are coordinated to serve specified loads, including in an islanded fashion.
- A <u>Solar Microgrid</u> is a behind-the-meter (BTM) microgrid that solely relies on solar for energy generation when islanded.
- A <u>Hybrid Solar Microgrid</u> is a Solar Microgrid that includes additional sources of energy generation, beyond just solar.
- A <u>Community Microgrid</u> a microgrid that covers a target grid area and relies on existing distribution feeders (ie, power lines) to operate when islanded. Community Microgrids typically include both front-of-meter (FOM) and BTM resources, including Solar Microgrids, and require effective participation from utilities, which have mostly erected barriers to date.


Typical load tier resilience from Solar Microgrids

Clean Coalition

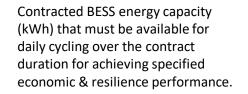
Percentage of time online for Tier 1, 2, and 3 loads for a Solar Microgrid designed for the University of California Santa Barbara (UCSB) with enough solar to achieve net zero and 200 kWh of energy storage per 100 kW solar.

Diesel generators are designed for limited resilience

Percentage of time

A typical diesel generator is configured to maintain 25% of the normal load for two days. If diesel fuel cannot be resupplied within two days, goodbye. This is hardly a solution for increasingly necessary long-term resilience. In California, Solar Microgrids provide a vastly superior trifecta of economic, environmental, and resilience benefits.

Clean Coalition Owner reserve


SOCr = the minimum state-of-charge (SOC) that is reserved for provisioning resilience. The SOCr can be dynamic and/or resized to between 0% and 100% of the contracted BESS energy capacity. A lower SOCr facilitates BESS operations that optimize daily economic performance, while a higher SOCr facilitates the provisioning of greater resilience.

cycling energy capacity.

Top owner reserve is often in place to absorb battery energy storage system (BESS) degradation over time, while still delivering the contracted daily

Bottom owner reserve is often required to meet BESS warranty requirements that are imposed by BESS vendors. SOCr

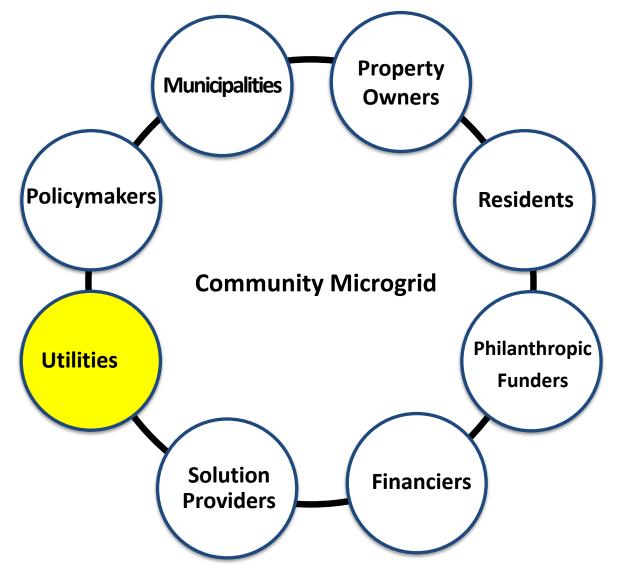
Owner reserve

Clean

Coalition

Community Microgrids are the grid of the future

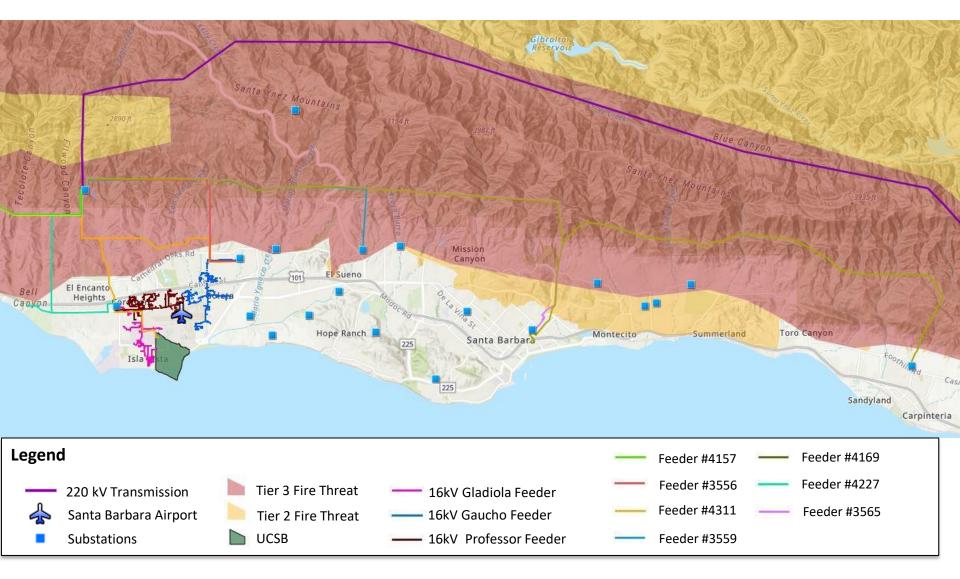
A Community Microgrid is a new approach for designing and operating the electric grid, stacked with local renewables and staged for resilience.


Key features:

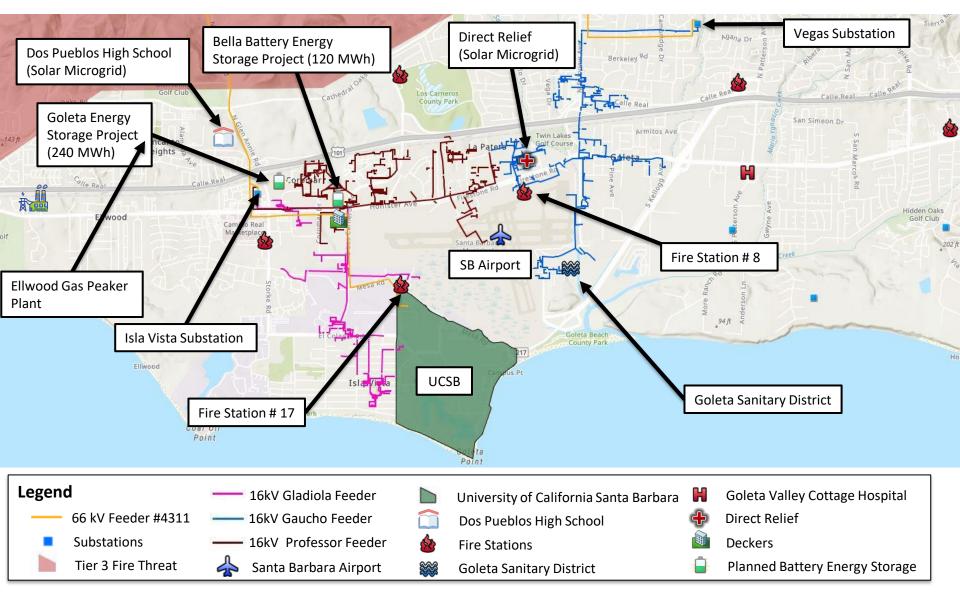
- A targeted and coordinated distribution grid area served by one or more substations – ultimately including a transmissiondistribution substation that sets the stage for Distribution System Operator (DSO) performance.
- Ability to utilize existing distribution grid infrastructure to serve the Community Microgrid during broader grid outages.
- High penetrations of local renewables and other distributed energy resources (DER) such as energy storage and demand response.
- <u>Staged capability</u> for indefinite renewables-driven backup power for critical community facilities across the grid area – achieved by 25% local renewables mix.
- A solution that can be readily extended throughout a utility service territory and replicated into any utility service territory around the world.

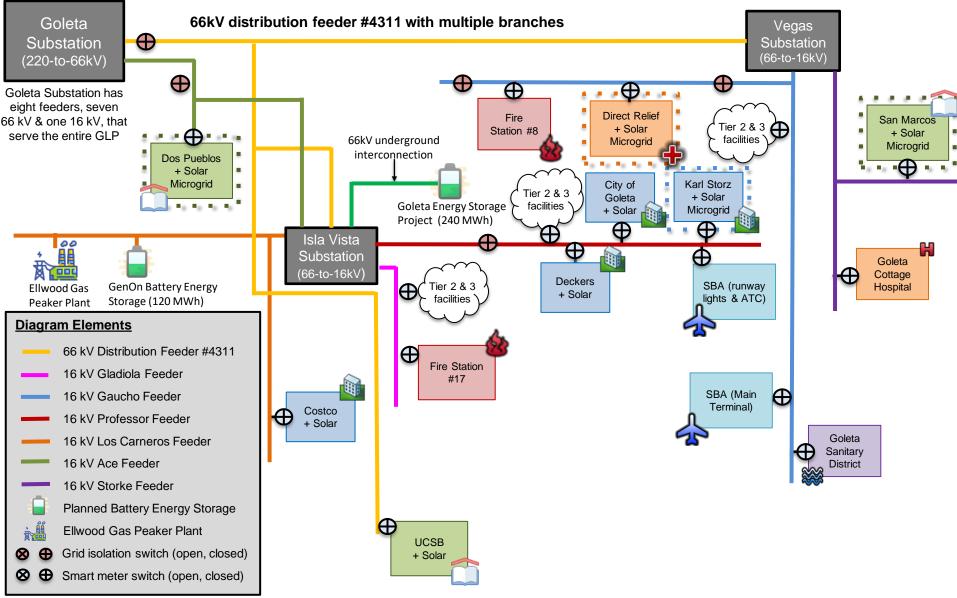
Community Microgrid key stakeholders

Goleta Load Pocket (GLP)


Clean Coalition

- GLP spans 70 miles of California coastline, from Point Conception to Lake Casitas, encompassing the cities of Goleta, Santa Barbara (including Montecito), and Carpinteria.
- GLP is highly transmission-vulnerable and disaster-prone (fire, landslide, earthquake).
- 200 megawatts (MW) of solar and 400 megawatt-hours (MWh) of energy storage will provide 100% protection to GLP against a complete transmission outage ("N-2 event").
 - 200 MW of solar is equivalent to about 5 times the amount of solar currently deployed in the GLP and represents about 25% of the energy mix.
 - Multi-GWs of solar siting opportunity exists on commercial-scale built-environments like parking lots, parking structures, and rooftops; and 200 MW represents about 7% of the technical siting potential.
 - Other resources like energy efficiency, demand response, and offshore wind can significantly reduce solar+storage requirements.


Core load area of the GLP


Target 66kV feeder serves critical GLP loads

Clean Coalition

Target 66kV feeder grid area block diagram

Clean Coalition

Making Clean Local Energy Accessible Now

Santa Barbara Unified School District (SBUSD) case study

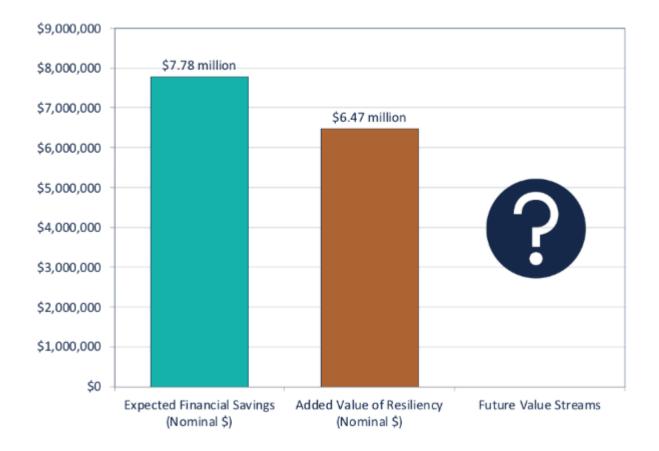
Santa Barbara Unified School District (SBUSD)

- The entire Santa Barbara region is surrounded by extreme fire risk (earthquake & landslide risk too) and is extremely vulnerable to electricity grid outages.
- The SBUSD is a major school district that increasingly recognizes the value-of-resilience (VOR) and has embraced the Clean Coalition's vision to implement Solar Microgrids at a number of its key schools and other critical facilities.
- SMHS is in the middle of the extensive SBUSD service area.

Clean

Six SBUSD Solar Microgrid sites

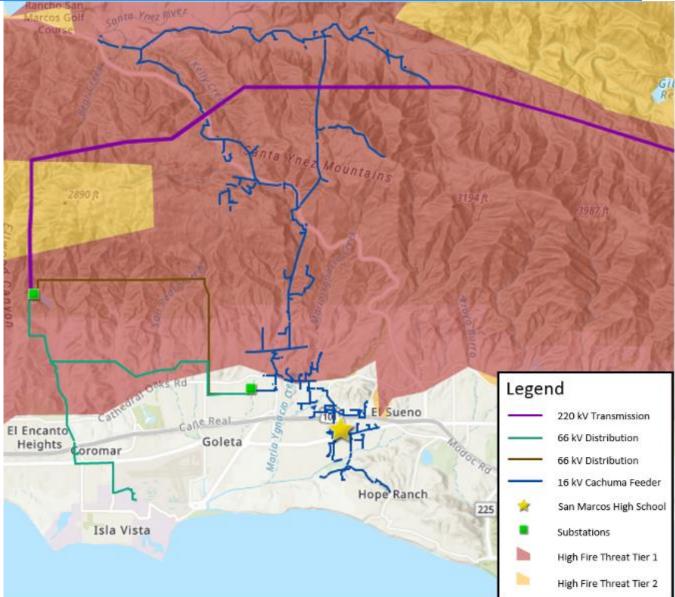
District Food Warehouse & District Office


Santa Barbara High School

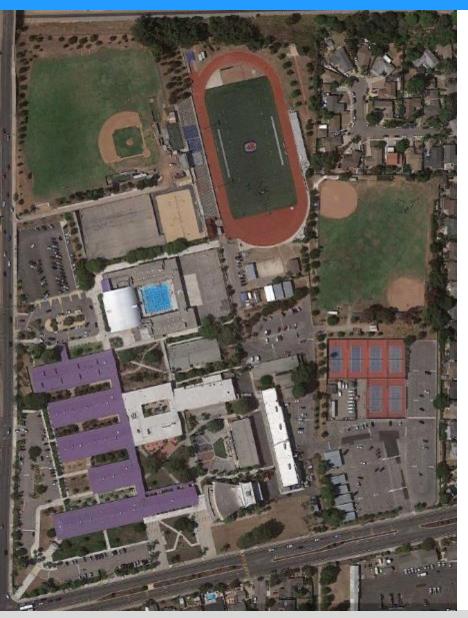
San Marcos High School

Guaranteed SBUSD bill savings and free VOR

Lifetime (28-year) Bill Savings and Added Value of Resiliency



San Marcos High School (SMHS) Solar Microgrid case study


SMHS is vulnerable to distribution outages too

Clean Coalition

San Marcos High School (SMHS) campus view

- SMHS is a large public high school serving 2,000+ students in grades 9 through 12.
- Red Cross designated facility.
- School features include:
 - Array of classroom buildings
 - Large pool
 - o Gymnasium
 - Football stadium
 - Multiple baseball fields
 - Cafeteria
 - Outdoor Greek theater
 - $_{\circ}$ Auditorium
 - Numerous tennis & basketball courts
- Craig Lewis in the Class of 1981.

The SMHS Solar Microgrid is intended to enable the school to operate independently during grid outages of any duration with **indefinite resilience for the most critical loads** and **resilience for all loads for significant percentages of time**.

- Solar
 - 725 kWp
 - Solar is entirely in the form of solar parking canopies
 - Net Zero Energy (NZE) is exceeded at 101%
- Battery Energy Storage System (BESS)
 - 700 kWh energy capacity
 - 350 kW power capacity
- Critical (Tier 1) loads
 - Food service refrigerators & freezers, maintained indefinitely
 - 4.36 kW of average load
 - 3.44% of total average load
- Priority (Tier 2) loads
 - Gym lights and Main Distribution Frame, maintained at least 80% of the time
 - 4.32 kW of average load
 - 3.41% of total average load

SMHS Solar Microgrid site layout

Clean Coalition San Marcos HS

4750 Hollister Ave, Santa Barbara CA 93110

Solar PV

Annual PV Production Target: 1,164,000 kWh

Battery Energy Storage Resiliency

Average State of Charge Reserve (SOCr): 28.50 kWh Tier 1 Average Load: 4.36 kW Tier 2 Average Load: 4.32 kW

EV Charging Infrastructure

Stalls	ADA Stalls	Non-ADA Stalls	Existing EVSEs	5-Year Instal
514	22	492	0	37

Notes

 This site is a designated community resilience center and Red Cross emergency shelter.

2. No lighting in main lot (some perimeter).

 Main parking lot to be redesigned and existing portables relocated prior to solar construction. Will need to add ADA stalls under solar canopy and POT as part of main parking lot reconfiguration.

 Will need to cover existing ADA stalls in NW Lot with the south ends of canopies C-5 and C-6 and two existing light poles will need to be removed.

 Long homerun through campus from canopies C-5 and C-6, approximately 1,450. Short homerun of approximately 150' crossing drainage swale from main parking lot to POI.

Small parking area under C-4 may be challenging to cover/upgrade ADA compliance.

7. Good BESS location adjacent to main service enclosure.

 Suggest participation in future SCE EV Charge program. Due to location of EV charging areas, SCE likely to drop a new dedicated service feed.

Santa Barbara Unified School District

District-Wide Solar PV Energy and Resiliency RFP PV, BESS, and EV Charge Site Plan

5/18/2020

Interview questions from Ms Shaefer 6th Grade Students for Craig Lewis

- 1) What have the issues been in the past that prevented Peabody getting solar? (Manuel)
- 2) What would the cost estimate be for installing a PV system at Peabody? (Ryland)
- 3) How much BESS battery power does Peabody need? (Ana)
- 4) How much does the BESS battery system add to the cost? (Adamary)
- 5) What type of financing do you recommend for schools? (Trey)
- 6) Why did SB Unified go with a Power Purchase Agreement? (Mason)
- 7) Would Peabody get a tax incentive from the state for solar? (Maxx)

- How much space will solar panels at Peabody take up? (Trey)
- 9) Do you recommend installing freestanding solar arrays instead of putting solar on roofs for schools? (Javier)
- 10)Would it be possible to put it on the blacktop playground instead of doing it in the NE corner to provide shade for PE classes? (Sydney)
- 11) Are we going to need multiple locations to meet our energy needs? (Christopher)
- 12)How many solar panels do we need to put at Peabody? (Angel)
- 13) Do solar arrays on lawns kill the grass? (Chris)14) If it is on the playground, can solar panels be damaged by balls or sports equipment? (Adrian)

- 15)Is it better to put panels on lawns or over black top? (Dylan)
- 16)What are the safety precautions for the poles if they are on playgrounds?(Sol)
- 17)What are we allowed to put underneath the solar arrays if they are on playgrounds? (Joselyn)
- 18)What are the issues with putting solar in the parking lot? (Andy)
- 19)How much more would it cost to put it in the parking lot? (Gianna)
- 20)What is the process for putting solar arrays at schools once it has been approved by the board? (Chris)21)How long does it take to install? (Sydney)

22) What do other schools say after installing the solar panels? Is there anything they thought was a problem? What did they like about having them? (Adrian)

23) What makes a solar company good to work with? (Moises)

24) Why did the SB unified go with Engie as a company?(Sol)

25) What companies are good to work with schools? (Kim)

26) Is there anything else we should know about solar? (Gianna)

Consider a career in Sustainability

"We came all this way to to explore the Moon, and what we discovered is the Earth."

- Bill Anders, Apollo Astronaut, 1968 Earthrise photo

You all can continue to be Solar Leaders!!!

Clean Coalition

- Share your solar knowledge with others.
- Promote solar for anyone you know with a connection to:
 - A house
 - An office
 - Roles in government, including:
 - School districts
 - Cities
 - Counties
 - State
 - Federal
- Educate people that solar can go on all types of built environments, including rooftops, parking lots, water reservoirs, and even over roads and waterways.
- I remember when my nephew was about your age and asked his Mom & Dad whether they had considered solar for their house. And presto, they got solar a few months later!!!