Clean Coalition Renewables-driven Microgrids deliver unparalleled resilience

Craig Lewis

Executive Director 650-796-2353 mobile craig@clean-coalition.org

Making Clean Local Energy Accessible Now

5 December 2023

<u>Mission</u>

To accelerate the transition to renewable energy and a modern grid through technical, policy, and project development expertise.

Renewable Energy End-Game

100% renewable energy; 25% local, interconnected within the distribution grid and ensuring resilience without dependence on the transmission grid; and 75% remote, fully dependent on the transmission grid for serving loads.

- 1. Economic
 - Savings via grid efficiency and lower costs
- 2. Environmental
 - Sustainability via high renewable energy
- 3. Resilience

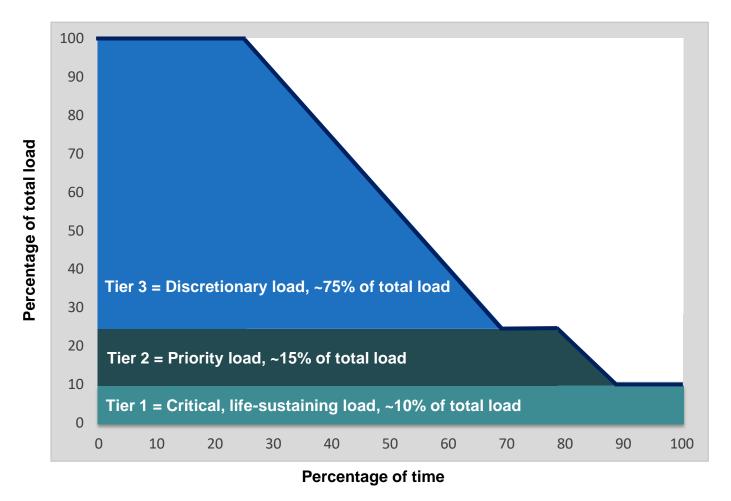
Safety via enduring energy availability

Various types of Solar Microgrids

- A <u>microgrid</u> is a combination of energy resources, definitely including generation, that are coordinated to serve specified loads, including in an islanded fashion.
- A <u>Solar Microgrid</u> is a behind-the-meter (BTM) microgrid that solely relies on solar for energy generation when islanded.
- A <u>Hybrid Solar Microgrid</u> is a Solar Microgrid that includes additional sources of energy generation, beyond just solar.
- A <u>Community Microgrid</u> a microgrid that covers a target grid area and relies on existing distribution feeders (ie, power lines) to operate when islanded. Community Microgrids typically include both front-of-meter (FOM) and BTM resources, including Solar Microgrids, and require effective participation from utilities, which have mostly erected barriers to date.

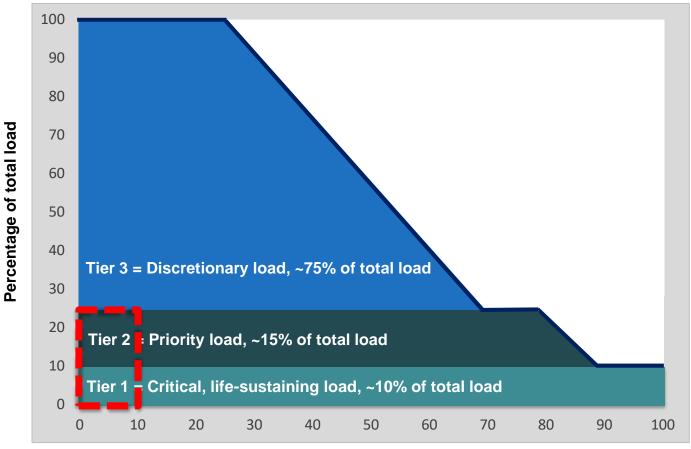
Storage, Resilience, Value-of-Resilience (VOR), and Load Management

Clean


Top owner reserve is often in place to absorb battery energy storage system (BESS) degradation over time, while still delivering the contracted daily cycling energy capacity. **Owner reserve** Contracted BESS energy capacity SOCr = the minimum state-of-charge (SOC) (kWh) that must be available for that is reserved for provisioning resilience. daily cycling over the contract The SOCr can be dynamic and/or resized to duration for achieving specified between 0% and 100% of the contracted BESS economic & resilience performance. energy capacity. A lower SOCr facilitates BESS operations that optimize daily economic performance, while a higher SOCr facilitates SOCr the provisioning of greater resilience. **Owner reserve** Bottom owner reserve is often required to meet BESS warranty requirements that are imposed by

BESS vendors.

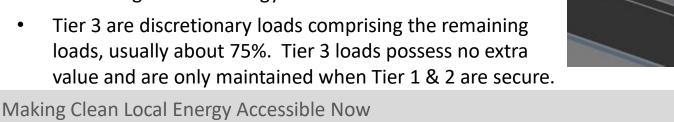
Clean


Typical load tier resilience from Solar Microgrids

Clean Coalition

Percentage of time online for Tier 1, 2, and 3 loads for a Solar Microgrid designed for the University of California Santa Barbara (UCSB) with enough solar to achieve net zero and 200 kWh of energy storage per 100 kW solar.

Diesel generators are designed for limited resilience


Percentage of time

A typical diesel generator is configured to maintain 25% of the normal load for two days. If diesel fuel cannot be resupplied within two days, goodbye. This is hardly a solution for increasingly necessary long-term resilience. In California, Solar Microgrids provide a vastly superior trifecta of economic, environmental, and resilience benefits.

Clean Coalition

Value-of-Resilience (VOR) depends on tier of load

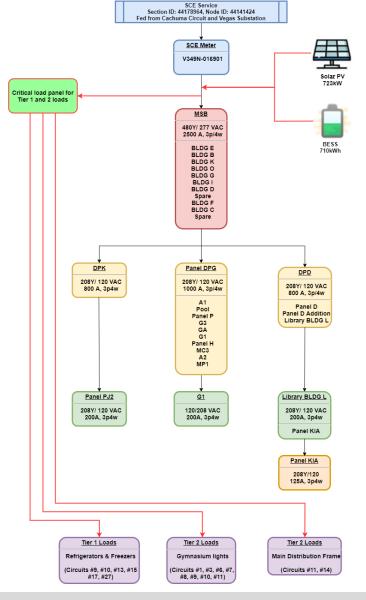
- Everyone understands there is significant value to resilience provided by indefinite renewables-driven backup power, especially for the most critical loads
 - But, this value-of-resilience (VOR) has yet to be quantified in a straightforward methodology.
 - Hence, VOR is often given no value, leaving a dangerously short-sighted economic gap.
- The Clean Coalition aims to establish a standardized value-of-resilience (VOR) for critical, priority, and discretionary loads that will help everyone understand that premiums are appropriate for indefinite renewables-driven backup power to critical loads and almost constant backup power to priority loads, which yields a configuration that delivers backup power to all loads a lot of the time
- The Clean Coalition's VOR approach standardizes resilience values for three tiers of loads:
- Tier 1 are mission-critical & life-sustaining loads and warrant 100% resilience. Tier 1 loads usually represent about 10% of the total load with a 3x energy value.
- Tier 2 are priority loads that should be maintained as long as doing so does not threaten the ability to maintain Tier 1 loads. Tier 2 loads usually represent about 15% of the total load and get a 1.5x energy value.
- Tier 3 are discretionary loads comprising the remaining loads, usually about 75%. Tier 3 loads possess no extra value and are only maintained when Tier 1 & 2 are secure.

Clean

VOR123

VOR123 is the value-of-resilience (VOR) from Solar Microgrids methodology that the Clean Coalition has developed to normalize VOR across all types of facilities & geographies.
The VOR normalization is founded in tiering loads into three categories: Tier 1 (critical), Tier 2 (priority), and Tier 3 (discretionary). Since each Tier has its own resilience requirement and VOR, this methodology is called VOR123.

VOR123 webinar


https://clean-coalition.org/news/webinarvaluing-resilience-solar-microgrids-thursday-<u>5-nov-2020/</u>

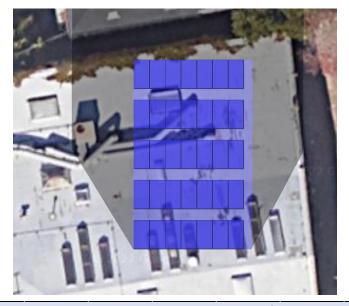
Load Management is fundamental to VOR123

Although there are multiple potential Load Management configurations, the minimal functionality anticipated to be cost-effectively implemented is referred to as **the Critical Load Panel (CLP) approach**.

The CLP name reflects the requirement for a smart critical load panel that maintains Tier 1 loads indefinitely and toggles Tier 2 loads. In the CLP approach, Tier 3 loads will be toggled as a group by toggling power to the Main Service Board (MSB). Figure 9 illustrates the CLP approach for SMHS, with Tier 1 and Tier 2 loads being served by new dedicated wire runs that connect to a new smart critical load panel.

Think Vertical for maximizing winter solar

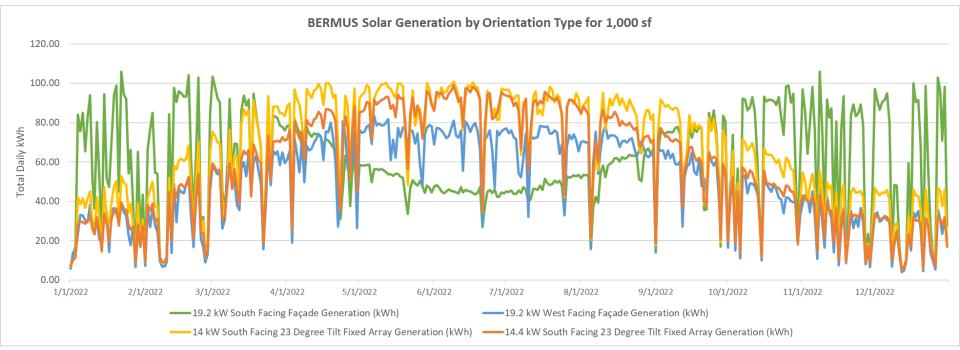
Solar sizing and generation per 1,000 sf by orientation type



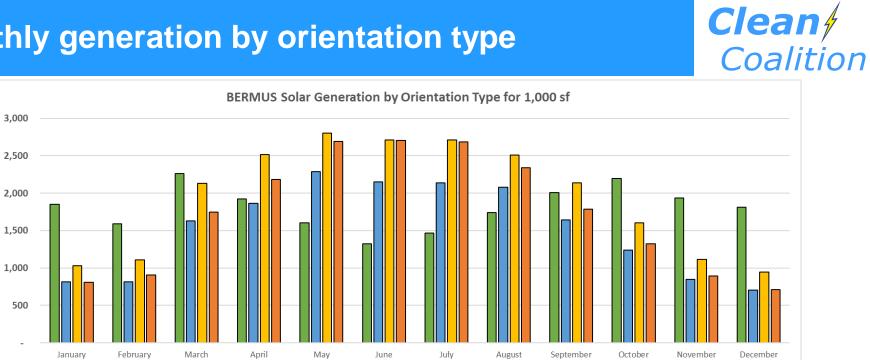
Example Façade (Not as shown in table)

Fixed Tilt South Facing

Fixed Tilt West Facing

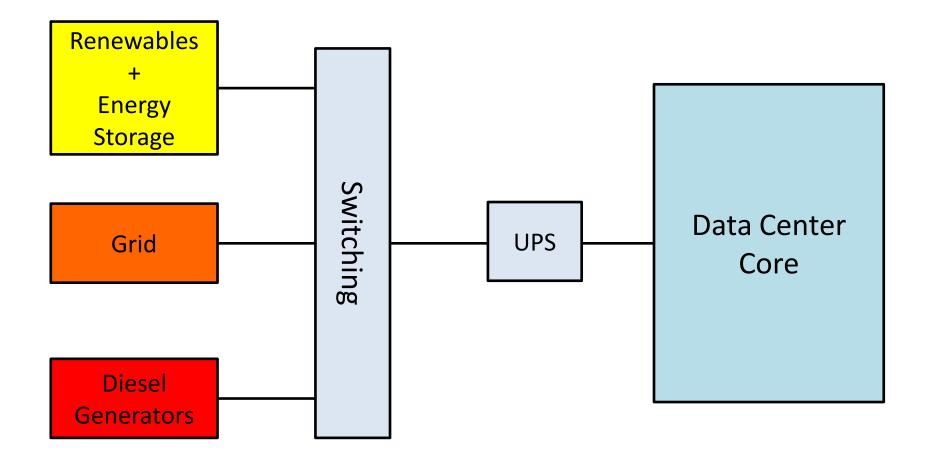


BERMUS Solar Generation by Orientation Type for 1,000 SQFT															
	System Size and Annual Generation			Summer and Winter Generation				System Layout Details							
Orientation Type	PV System Size (kWdc)	Annual Generation (kWh)	Annual kWh/kWp	21 June Generation (kWh)	21 June kWh/kWp	21 December Generation (kWh)	21 December (kWh/kWp)	Module Type	Number of Modules	Azumith (Degrees)	Tilt (Degrees)	Row Spacing (Feet)	Panel Orientation	Field Segment Size in Feet (Length x Width)	
Façade South Facing	19.20	21,701	1,130	26.89	1.40	4.47	0.23	Q Cells (400W)	48	180	89	0	Portrait	-	
Façade West Facing	19.20	18,221	949	27.09	1.41	4.61	0.24	Q Cells (400W)	48	270	89	0	Portrait	-	
Fixed Tilt (Rooftop Canopy) South Facing	14.00	23,323	1,666	34.54	2.47	5.92	0.42	Q Cells (400W)	35	180	23	2.4	Portrait	25 x 40	
Fixed Tilt (Rooftop Canopy) West Facing	14.40	20,789	1,444	35.04	2.43	6.17	0.43	Q Cells (400W)	36	270	23	1	Portrait	25 x 40	

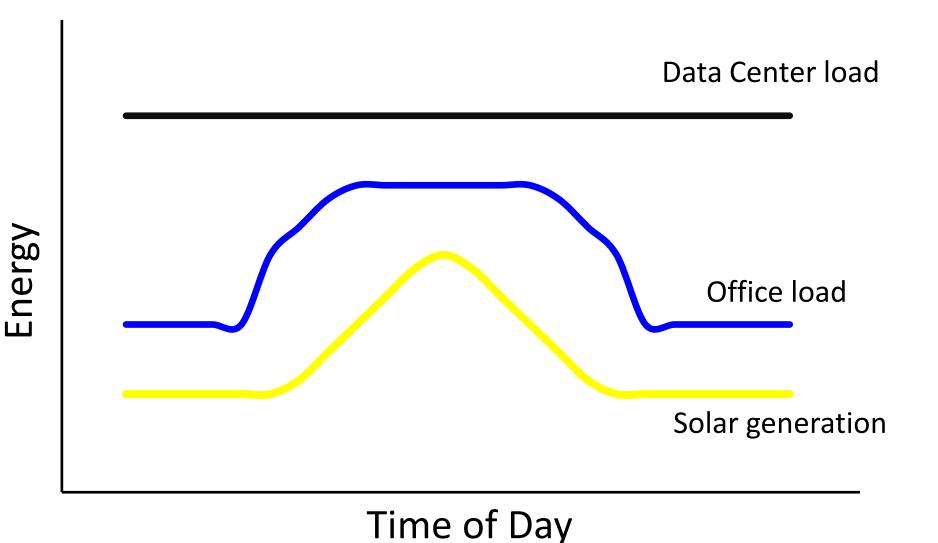

Daily generation by orientation type

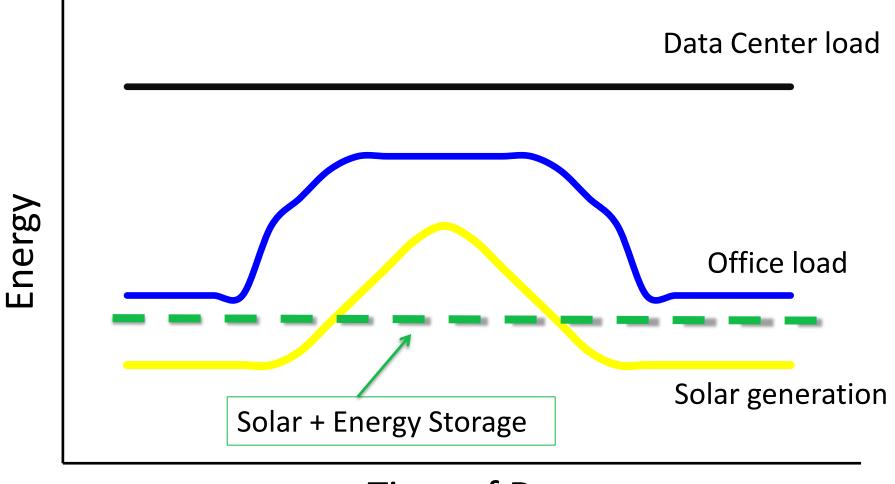
BERMUS - Max and Min Daily Solar Generation by Orientation Type and Date for 1,000 sf											
Time Per	iod	19.2 kW South Facing Facade	19.2 kW West Facing Façade	14 kW South Facing 23	14.4 kW West Facing 23						
linerei	iou	15.2 kw South Facing Façade	15.2 KW West Facing Façade	Degree Fixed Tilt Array	Degree Fixed Tilt Array						
Max Daily (kWh)		106	83	101	99						
Max Day	امسمد	11/8/2022	5/7/2022	6/9/2022	6/9/2022						
Min Daily (kWh)	Annual	4	4	5	6						
Min Day		12/12/2022	12/12/2022	12/12/2022	12/12/2022						
Max Daily (kWh)		105.93	67.41	93.43	73.21						
Max Day	November	11/8/2022	3/24/2022	3/24/2022	3/24/2022						
Min Daily (kWh)	- March	4	4	44	6						
Min Day		12/12/2022	12/12/2022	12/12/2022	12/12/2022						

Monthly generation by orientation type



🗉 19.2 kW South Facing Façade 🔳 19.2 kW West Facing Façade 📃 14 kW South Facing 23 Degree Fixed Tilt Array 🔲 14.4 kW West Facing 23 Degree Fixed Tilt Array


BERMUS - Total, Max, Average, and Min Daily Solar Generation by Orientation Type and Month for 1,000 sf																	
	19.2 kW South Facing Façade				· · ·	19.2 kW West Facing Façade				14 kW South Facing 23 Degree Fixed Tilt Array				14.4 kW West Facing 23 Degree Fixed Tilt Array			
Month	Total Generation (kWh)	Max Daily Generation (kWh)	Average Daily Generation (kWh)	Min Daily Generation (kWh)	Total Generation (kWh)	Max Daily Generation (kWh)	Average Daily Generation (kWh)	Min Daily Generation (kWh)	Total Generation (kWh)	Max Daily Generation (kWh)	Average Daily Generation (kWh)	Min Daily Generation (kWh)	Total Generation (kWh)	Max Daily Generation (kWh)	Daily	Min Daily Generation (kWh)	
January	1,853	106	60	6	816	39	26	6	1,033	53	33	7	812	39	26	7	
February	1,594	104	56	7	816	53	28	7	1,112	70	39	9	904	54	32	9	
March	2,261	103	73	16	1,632	67	52	16	2,131	93	68	19	1,747	73	56	19	
April	1,920	82	65	25	1,867	81	63	19	2,514	100	85	30	2,185	88	74	25	
May	1,603	59	52	34	2,290	83	74	48	2,801	100	90	48	2,693	96	87	56	
June	1,325	48	44	27	2,150	81	71	27	2,713	101	90	35	2,704	99	90	35	
July	1,464	53	47	33	2,141	78	69	32	2,710	98	87	42	2,688	96	87	43	
August	1,738	67	56	16	2,078	78	67	16	2,508	95	81	20	2,341	88	76	21	
September	2,006	86	66	14	1,642	67	55	15	2,135	92	71	18	1,789	77	60	19	
October	2,194	99	71	10	1,238	54	40	10	1,601	71	52	12	1,323	57	43	12	
November	1,934	106	65	8	850	46	29	7	1,117	56	38	9	892	43	30	9	
December	1,814	103	59	4	706	36	23	4	948	47	31	5	712	33	23	6	
Total	21,706	85	60	17	18,226	64	50	17	23,323	81	64	21	20,790	70	57	22	


Solar Microgrid considerations for a Data Center

Clean

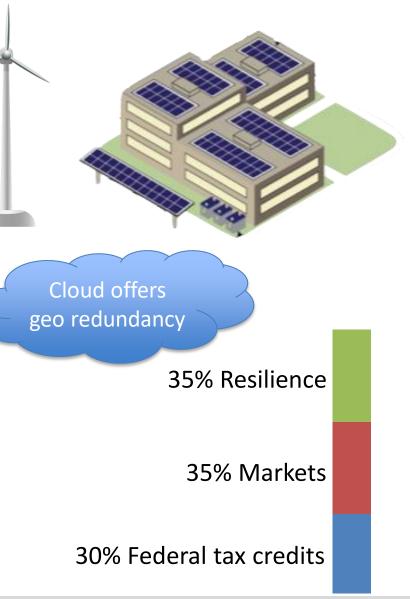
Clean

Time of Day

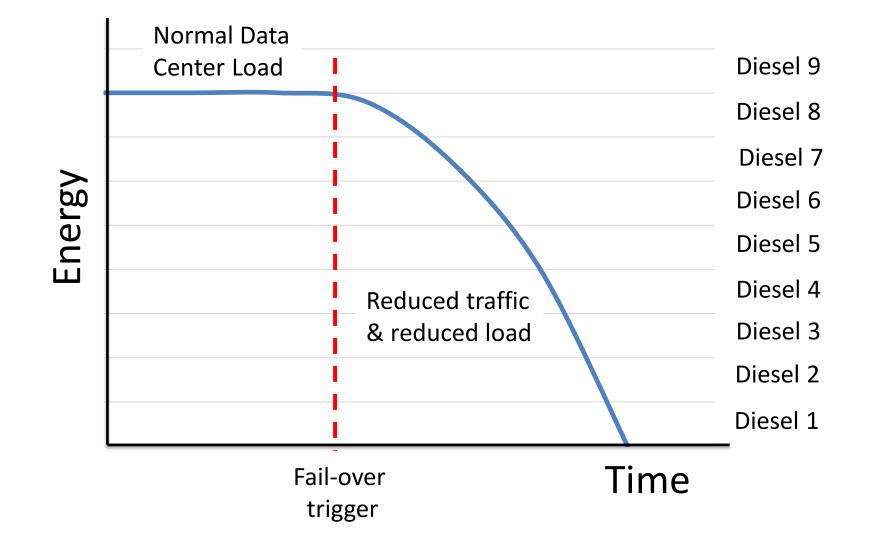
Clean

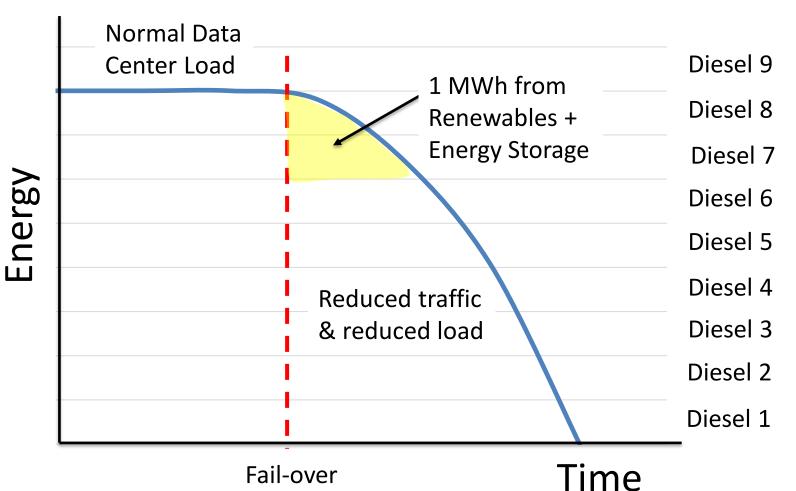
- Assumptions
 - Z0% solar capacity factor (typical for MW-scale solar in California)
 - Worst solar day is 10% of average (ie, 2% capacity factor)
 - 7 2 acres of siting required per 1 MW of solar
 - Requires 24x7x365 performance
- Calculations
 - 7 24 MWh of replenishment solar required daily (1 MW x 24 hr)
 - 50 MW of solar required (50 MW x .02 capacity factor x 24 hr)
 - 7 24 MWh of energy storage required

Opportunity: Local renewables + energy storage can provide indefinite backup power.

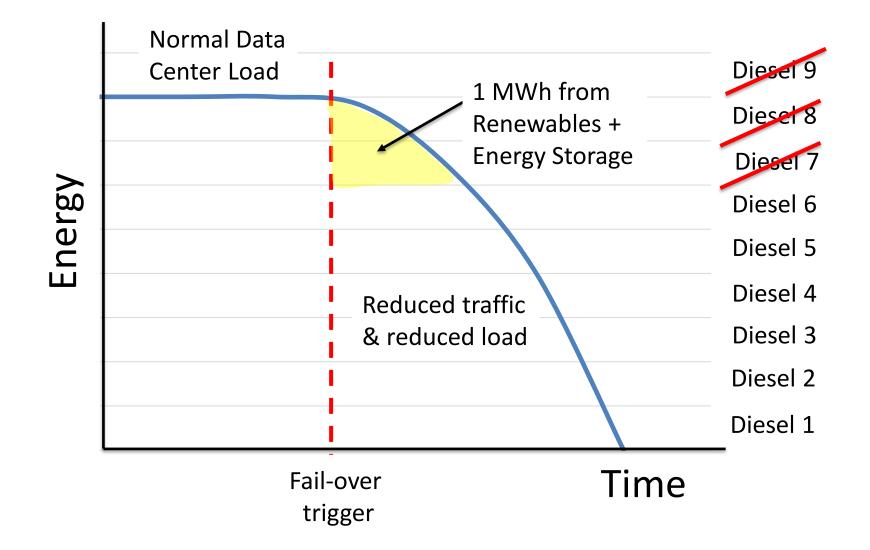

Challenge: Data centers have large flat loads; 100% solar is tough.

Clean


Other Plays for Local Renewables + Energy Storage


Clean Coalition

- Diversify renewables
 - Wind & solar generation profiles are highly complementary
 - One 3MW wind turbine averages 24 MWh/day
- Diversify geography
 - Demand Response (DR) combined with renewables + energy storage = big UPS
 - Fail-over strategies can allow significant reduction in energy usage
- Monetize energy storage in markets like
 DR and frequency regulation
 - Markets typically cover 35% of energy storage costs while tax credits cover another 30%



trigger

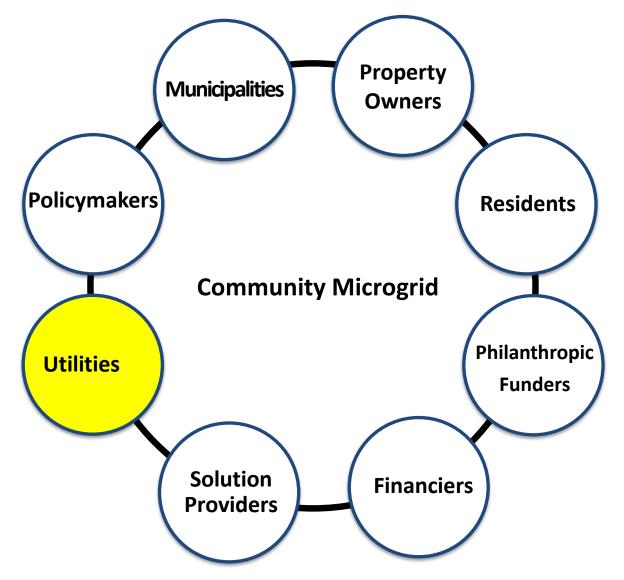
Clean

I MWh of energy storage with small solar or other renewables

7 2 MW of solar supplies 1 MWh of energy on worst weather day in California

> Replacing 1 MWh of Diesel with local renewables + energy storage is easy

- ✓ Local renewables + energy storage is increasingly viable, including for a portion of data center requirements
- Challenges exist for data center pioneers to help overcome


The Clean Coalition is seeking data center pioneers to conquer the next renewables frontier!

Getting things done = aligning stakeholders

Community Microgrid stakeholders

Clean Coalition

- 1. Humans like things to be simple
 - Make sure that objectives & analyses are effectively presented.
- 2. Most humans are capitalists
 - Economics are fundamental to all stakeholder decisions.
 - With utilities, follow the money.
 - With policymakers, hold them accountable.
- 3. Success requires multi-pronged action combined with courageous & relentless pursuit
 - Perform comprehensive analyses.
 - Tell the story effectively which usually means colorfully.
 - Repeat the messaging courageously and ad nauseum.