

December 12, 2025

Public Utilities Regulatory Authority
Ten Franklin Square
New Britain, Connecticut 06051

**RE: DOCKET NO. 25-02-14 RENEWABLE ENERGY TARIFF PROGRAM
SUCCESSOR STUDY NOTICE OF REQUEST FOR WRITTEN COMMENTS**

The Clean Coalition submits these comments in Docket Number 25-02-14, in response to the November 26, 2025, *Notice of Request for Written Comments* on the Renewable Energy Tariff Program Successor Study. In our response to the August 26, 2025, *Request for Written Comments*, we detailed the structure of a Feed-In Tariff (FIT) capable of facilitating the streamlined deployment of numerous resource types and configuration and proposed that PURA adopt a FIT for a Successor Program. Note, a FIT can effectively serve as a compensation tariff for any configuration or customer class, reducing the administrative costs and burdens.

Differentiated pricing for residential and non-residential deployments properly compensates resources in a competitive manner, while acknowledging the differences in project type, size, configuration, and grid value. In response to the Request for Written Comments, the Clean Coalition has the following recommendations:

- We strongly support including an option for front-of-meter (unbundled) storage, which enables cost savings due to economies of scales, compared to the higher price of small-scale behind-the-meter storage deployments.
- The Clean Coalition supports a capacity-based cap of at least 100 MW annually, with an option to step up to 150 MW if at least 80% of the annual cap is met in a year or less.
- Compensation for solar parking canopies is a great opportunity to achieve multiple policy objectives at the same time, in a manner that directly benefits local residents.
- The program should be designed to maximize deployments on the built environment. Each “infill” project reduces the acreage of Connecticut’s natural lands required to site renewables in order to achieve the state’s climate and energy goals in a timely manner.

Description of the Clean Coalition

The Clean Coalition is a nonprofit organization whose mission is to accelerate the transition to renewable energy and a modern grid through technical, policy, and project development expertise. The Clean Coalition drives policy innovation to remove barriers to procurement and interconnection of distributed energy resources (“DER”)—such as local renewables, demand response, and energy storage—and we establish market mechanisms that realize the full potential of integrating these solutions for optimized economic, environmental, and resilience benefits.

The Clean Coalition also collaborates with utilities, municipalities, property owners, and other stakeholders to create near-term deployment opportunities that prove the unparalleled benefits of local renewables and other DER.


1. Front-of-Meter (FOM) Energy Storage

While the Clean Coalition strongly supports options for paired solar+storage for both residential and non-residential customer classes, we noted in our previous comments that siting constraints are a substantial issue for some consumers attempting to co-locate solar and storage. Energy Storage prices are the other major issue. The cost of storage has dropped drastically over the last decade, but it still represents the greatest portion of the cost of a paired solar+storage project—particularly for smaller behind-the-meter (BTM) storage projects.

In contrast, FOM energy storage can be deployed in locations that provide the greatest value and the least cost to deploy. FOM storage projects can be right sized based on grid needs and the available hosting capacity, without being limited in size by a site's historical generation like BTM resources are. The Clean Coalition worked on a California Energy Commission grant funded FOM energy storage project in San Francisco called the [Valencia Gardens Energy Storage \(VGES\)](#), which demonstrated that FOM energy storage can increase the hosting capacity on a feeder by as much as 25%. When FOM energy is deployed near a substation and the storage operations are coordinated with the local utility, upstream impacts can be [mitigated](#). [Peak shaving and congestion relief](#) through strategic charge and discharge can delay or defer costly upgrades on the distribution, including at the substation level, and avoid transmission upgrades by keeping energy local. Moreover, each FOM energy storage deployment is like a puzzle piece that brings the distribution grid a step closer to achieving resilience via the deployment of a Community Microgrid. FOM energy storage can serve as a grid forming asset and provide a black start function if the resource is configured properly. As mentioned in our previous comments, a Resilience Adder on top of a base FIT rate could provide developers with the incentive to include these additional functionalities in each FOM storage deployment.

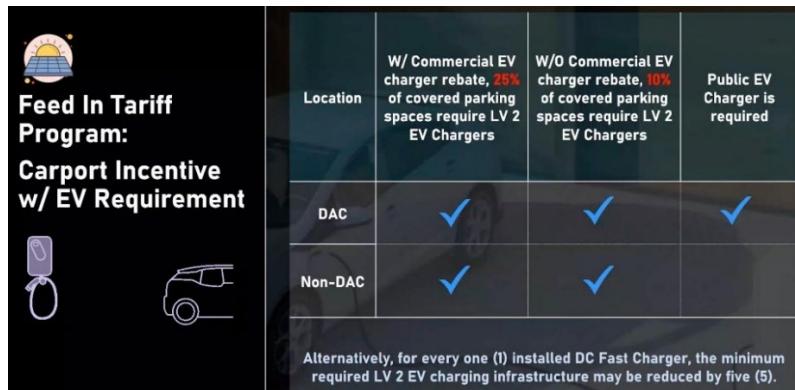
FOM – Virtual (Unbundled) Pairing

A virtual pairing option with FOM energy storage addresses both siting constraints and the high cost of energy storage by enabling solar deployments at optimal locations while retaining the added value of time shifting energy. A large deployment of energy storage maximizes the value of the storage to the grid, especially when the storage is sited close to a distribution substation (where its functionality is the highest) and the benefit from economies of scale is substantial. Modeling a Community Solar project with a 4-hour battery demonstrated that deploying a large battery under a virtual pairing option may decrease the installed cost by as much as 25%, benefiting the ratepayers. The chart below illustrates the benefit from economies of scale.

Economics of co-located and unbundled Solar+Storage for a Community Solar project

FOM storage is an option that can work as a standalone configuration or as an unbundled option for a Community Solar configuration. In both cases, deploying the energy storage FOM rather than BTM energy storage results in a more cost-effective outcome, in terms of a lower unit cost and far greater ratepayer benefits. From a cost-effectiveness and resource diversity perspective, it would be prudent of PURA to adopt an option for FOM energy storage.

7. Annual Program Cap


It is prudent to adopt a Successor Program that is primed for success by ensuring that additional capacity is reserved separately from any existing program. PURA should first determine what is an appropriate of capacity for the state to deploy on an annual basis through the Successor Program to determine the necessary budget, rather than using a pre-determined budget as the boundary that limits access to the program. Customers and developers are easily able to discern the likelihood that a proposed project will be approved if the cap is set using a capacity target. Capacity is straightforward and easily understandable, whereas a budget makes it far more challenging to determine the number of projects that can be deployed before the cap is met, especially if adders are offered to stimulate the deployment of projects with particular attributes. In addition, if PURA decides to adopt a FIT with Market Responsive Pricing as proposed in the Clean Coalition's initial September 10, 2025, the budget will change when the compensation rate is adjusted.

Since prior PURA programs were capped at 50 MW and 100 MW in total, a reasonable and appropriately ambitious cap for a Successor Program is at least 100 MW per year, with an automatic increase to 150 MW per year in any year where 80% or more of the prior year's capacity is subscribed. PURA could also set more granular caps to promote certain types of project deployments such as residential solar+storage or non-residential Parking Canopy Solar, but the Clean Coalition does not have any recommendations at this point.

9. Solar Parking Canopies

The Clean Coalition is strongly in favor of incentivizing all types of infill projects, especially where a project can provide community benefits that extend beyond the initial energy value. Solar Parking Canopies can provide a number of benefits, including creating shade in urban environments where urban heat islands are common and from the elements in the winter. While Solar Parking Canopies have a more expensive installed cost than ground mount or rooftop solar, effectively utilizing the built environment, additional benefits, and resource diversity are all important reasons to incentivize deployments.

Under a FIT structure, adders can also be used to catalyze specific types of developments to meet multiple policy goals at once. For example, the Los Angeles Department of Water and Power (LADWP) FIT program offers a generous carport adder averaging \$1.40/Watt-AC in disadvantaged communities (DAC) and \$1.20/Watt-AC in a non-DAC. However, the adder comes with the requirement that level 2 electric vehicle (EV) chargers must be deployed in at least 10% of the covered parking spaces, including a public EV charger for projects located in a DAC. The result is strategic electrification: an increased load associated with electrification at the same point on the grid as renewable that can meet the demand.

Feed In Tariff Program: Carport Incentive w/ EV Requirement

Alternatively, for every one (1) installed DC Fast Charger, the minimum required LV 2 EV charging infrastructure may be reduced by five (5).

Location	W/ Commercial EV charger rebate, 25% of covered parking spaces require LV 2 EV Chargers	W/O Commercial EV charger rebate, 10% of covered parking spaces require LV 2 EV Chargers	Public EV Charger is required
DAC	✓	✓	✓
Non-DAC	✓	✓	

EV chargers are required to be deployed to be eligible for a Carport Adder in LADWP's FIT rules.

For LADWP, the policy synergism between deploying car port solar and EV chargers, especially in DACs, justified the subsidy. The direct benefit makes this non-energy benefit relatively easy to value and compensate for, and we believe that it is important to acknowledge the full range of benefits from each infill project. Therefore, if PURA decides to adopt a FIT, a Solar Parking Canopy Adder is a perfect option.

Conclusion

In conclusion, the Clean Coalition strongly supports an option for FOM storage that includes unbundled storage and the inclusion of an adder for Solar Parking Canopies. We support a cap of at least 100 MW and urge PURA to promote resource deployments on the built environment. Maximizing the amount of distributed generation and storage will support a more effective utilization of the transmission and distribution grid, support Connecticut's clean energy goals, and reduce long-term ratepayer costs.

/s/ BEN SCHWARTZ
Ben Schwartz
Policy Director
Clean Coalition
1800 Garden Street
Santa Barbara, CA 93101
Phone: 626-232-7573
ben@clean-coalition.org

Dated: December 12, 2025