Battery Energy Storage Systems (BESS) Pros & Cons – 11 Dec 2024
Craig Lewis of the Clean Coalition presented during City of Irwindale's City Council meeting on 11 December 2024.
Read MoreAccelerating the planning, approval, and deployment of an Advanced Energy Community in southern San Mateo County
PAEC provided an opportunity for the Clean Coalition to develop innovative, replicable approaches for accelerating the deployment of Advanced Energy Communities (AECs). Based on 25 megawatts (MW) of peak demand reduction, the initiative is anticipated to save energy consumers over $25 million, generate over $100 million in regional economic output, create $35 million in local wages, and reduce greenhouse gas emissions by nearly 800 million pounds over 20 years.
Key AEC components in the PAEC Initiative:
PAEC is supported by a broad range of collaborators, including Pacific Gas & Electric and numerous local governments, and was made possible by a grant through the CEC’s Electric Program Investment Charge (EPIC) program.
PAEC showcased the benefits of an AEC, a replicable approach to modernizing the electric grid. AEC projects can provide significant energy, environmental, economic, resilience, and security benefits, but major barriers too often impede their planning and deployment. Finding viable sites, securing project financing, and connecting AEC projects to the grid all represent serious challenges.
The PAEC initiative was designed to overcome these barriers and establish a replicable model that can be used by other communities across California and beyond. PAEC results will inform future action by policymakers, municipalities, governmental agencies, utility executives, and other key stakeholders.
San Mateo County, CA as a model for the US
The core region for the PAEC initiative is the southern portion of San Mateo County, including the cities of Redwood City, Atherton, Menlo Park, and East Palo Alto, and their unincorporated areas.
Many areas in California are experiencing commercial and residential growth pressure similar to that in the PAEC region. This means that elements of PAEC can be replicated in other areas.
This initiative aimed to:
The PAEC initiative produced a number of ground-breaking studies and reports. Subjects covered include the economic benefits of energy efficiency and fuel switching for commercial-scale buildings; electric vehicle charging infrastructure; energy storage; streamlining the interconnection of advanced energy solutions to the grid; and much more. Details are below; for more on report findings, see our PAEC webinar series.
The PAEC Initiative studied projects that incorporate one or more components of an AEC and found dozens of projects worthy of emulation because they overcome economic or policy barriers. The team uncovered key findings about where to focus attention when developing AECs, in three main areas: economic, policy, and technical. The team also created a Master Community Design for an AEC in a disadvantaged community.
The PAEC team studied the economics of eight energy efficiency measures for five commercial-scale building types. Using a consistent approach to calculate payback, each report analyzes measures such as LED lighting conversion, building management systems (BMS) and advanced controls, reduction in phantom loads, and more. The reports show which measures provide the most savings and quickest payback times, and how savings can be realized by bundling various measures.
The PAEC initiative will foster the expansion of electric vehicles (EVs) by implementing smart designs, plans, and strategies for Electric Vehicle Charging Infrastructure (EVCI). Along with potential location evaluations, the PAEC team evaluated the cost-effectiveness to EV drivers of the EVCIs that offer the best value in terms of economic, environmental, and technical performance.
Distributed energy storage is in its infancy. But as project costs decrease, the market is expected to grow rapidly. Resilient solar+storage systems can also add value to the grid and to communities. The PAEC initiative reviewed financial factors in moving the market forward, as well as the role of standardized and streamlined permitting for distributed energy storage.
The new civic center plan for the Town of Atherton, in the PAEC region, studied key sustainable strategies that assist in lowering resource demand, including energy, water, material, and carbon. The study identified feasible, scalable, and regional strategies that can be easily replicated, while serving as an educational tool for the broader community.
PAEC will include at least one Solar Emergency Microgrid that the Clean Coalition is designing to provide renewables-driven power backup to critical facilities. With a combination of solar, energy storage, and monitoring, communications, and control, Solar Emergency Microgrids can provide indefinite backup power for critical loads like police and fire stations, emergency operations centers and shelters, and communications and water infrastructure.
The Clean Coalition’s Solar Siting Survey methodology evaluates all prospective solar sites and the interconnection hosting capacity for each site. The methodology assesses the technical siting potential for built-environment sites, including rooftops, parking lots, and parking garages, which are essential for procuring wholesale distributed generation. A Solar Siting Survey conducted in the PAEC region in March 2017 identified more than 400 prospective commercial-scale solar sites with over 65 MW of commercial-scale solar photovoltaic (PV) potential.
Interconnection is a significant barrier in developing distributed energy resources (DER) and achieving statewide energy and emission goals. The PAEC initiative seeks to educate policymakers and stakeholders on beneficial reforms that will keep interconnection processes efficient and cost-effective while maintaining a safe and reliable electric grid. The initiative also establishes a pilot to facilitate interconnection for wholesale distributed generation projects.
The PAEC team developed a methodology for prioritizing a set of model ordinances for further development, with associated recommendations for local government interventions in both existing buildings and new construction. Working with key stakeholders, the team identified AEC planning and permitting ordinances that can be scalable to other cities in the county and statewide.
Energy Tracking/Benchmarking Tool Report
Final PAEC Project Fact Sheet
Final Report Interviews with Public Agencies, Installers, and Vendors
Final Scorecard of Sustainability Features
Final Scorecard of Sustainability Features (Excel spreadsheet)
Lending, Customer Compensation, and Government Incentive Report
Literature Review & ISO-RTO Tariff Analysis
PAEC Final Project Report
An important goal of the PAEC Initiative was to provide a model and tools to help other communities around the US deploy Advanced Energy Communities. The PAEC team disseminated the valuable lessons learned from the Initiative through media coverage, blog posts on the Clean Coalition site, and a series of events.
A few highlights:
The latest in clean local energy
Learn about our innovative projects and initiatives on our blog, and see what others are reporting about our important work.
Craig Lewis of the Clean Coalition presented during City of Irwindale's City Council meeting on 11 December 2024.
Read MoreSierra Club Santa Barbara-Ventura Chapter reports on Santa Barbara's Climate Action Plan which the Clean Coalition supported.
Read articleThis blog post by the Clean Coalition details community benefits agreements for clean energy projects
Read More